This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is equinumerous to its domain. Exercise 4 of Suppes p. 98. (Contributed by NM, 28-Jul-2004) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fundmen.1 | |- F e. _V |
|
| Assertion | fundmen | |- ( Fun F -> dom F ~~ F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fundmen.1 | |- F e. _V |
|
| 2 | 1 | dmex | |- dom F e. _V |
| 3 | 2 | a1i | |- ( Fun F -> dom F e. _V ) |
| 4 | 1 | a1i | |- ( Fun F -> F e. _V ) |
| 5 | funfvop | |- ( ( Fun F /\ x e. dom F ) -> <. x , ( F ` x ) >. e. F ) |
|
| 6 | 5 | ex | |- ( Fun F -> ( x e. dom F -> <. x , ( F ` x ) >. e. F ) ) |
| 7 | funrel | |- ( Fun F -> Rel F ) |
|
| 8 | elreldm | |- ( ( Rel F /\ y e. F ) -> |^| |^| y e. dom F ) |
|
| 9 | 8 | ex | |- ( Rel F -> ( y e. F -> |^| |^| y e. dom F ) ) |
| 10 | 7 9 | syl | |- ( Fun F -> ( y e. F -> |^| |^| y e. dom F ) ) |
| 11 | df-rel | |- ( Rel F <-> F C_ ( _V X. _V ) ) |
|
| 12 | 7 11 | sylib | |- ( Fun F -> F C_ ( _V X. _V ) ) |
| 13 | 12 | sselda | |- ( ( Fun F /\ y e. F ) -> y e. ( _V X. _V ) ) |
| 14 | elvv | |- ( y e. ( _V X. _V ) <-> E. z E. w y = <. z , w >. ) |
|
| 15 | 13 14 | sylib | |- ( ( Fun F /\ y e. F ) -> E. z E. w y = <. z , w >. ) |
| 16 | inteq | |- ( y = <. z , w >. -> |^| y = |^| <. z , w >. ) |
|
| 17 | 16 | inteqd | |- ( y = <. z , w >. -> |^| |^| y = |^| |^| <. z , w >. ) |
| 18 | vex | |- z e. _V |
|
| 19 | vex | |- w e. _V |
|
| 20 | 18 19 | op1stb | |- |^| |^| <. z , w >. = z |
| 21 | 17 20 | eqtrdi | |- ( y = <. z , w >. -> |^| |^| y = z ) |
| 22 | eqeq1 | |- ( x = |^| |^| y -> ( x = z <-> |^| |^| y = z ) ) |
|
| 23 | 21 22 | imbitrrid | |- ( x = |^| |^| y -> ( y = <. z , w >. -> x = z ) ) |
| 24 | opeq1 | |- ( x = z -> <. x , w >. = <. z , w >. ) |
|
| 25 | 23 24 | syl6 | |- ( x = |^| |^| y -> ( y = <. z , w >. -> <. x , w >. = <. z , w >. ) ) |
| 26 | 25 | imp | |- ( ( x = |^| |^| y /\ y = <. z , w >. ) -> <. x , w >. = <. z , w >. ) |
| 27 | eqeq2 | |- ( <. x , w >. = <. z , w >. -> ( y = <. x , w >. <-> y = <. z , w >. ) ) |
|
| 28 | 27 | biimprcd | |- ( y = <. z , w >. -> ( <. x , w >. = <. z , w >. -> y = <. x , w >. ) ) |
| 29 | 28 | adantl | |- ( ( x = |^| |^| y /\ y = <. z , w >. ) -> ( <. x , w >. = <. z , w >. -> y = <. x , w >. ) ) |
| 30 | 26 29 | mpd | |- ( ( x = |^| |^| y /\ y = <. z , w >. ) -> y = <. x , w >. ) |
| 31 | 30 | ancoms | |- ( ( y = <. z , w >. /\ x = |^| |^| y ) -> y = <. x , w >. ) |
| 32 | 31 | adantl | |- ( ( ( Fun F /\ y e. F ) /\ ( y = <. z , w >. /\ x = |^| |^| y ) ) -> y = <. x , w >. ) |
| 33 | 30 | eleq1d | |- ( ( x = |^| |^| y /\ y = <. z , w >. ) -> ( y e. F <-> <. x , w >. e. F ) ) |
| 34 | 33 | adantl | |- ( ( Fun F /\ ( x = |^| |^| y /\ y = <. z , w >. ) ) -> ( y e. F <-> <. x , w >. e. F ) ) |
| 35 | funopfv | |- ( Fun F -> ( <. x , w >. e. F -> ( F ` x ) = w ) ) |
|
| 36 | 35 | adantr | |- ( ( Fun F /\ ( x = |^| |^| y /\ y = <. z , w >. ) ) -> ( <. x , w >. e. F -> ( F ` x ) = w ) ) |
| 37 | 34 36 | sylbid | |- ( ( Fun F /\ ( x = |^| |^| y /\ y = <. z , w >. ) ) -> ( y e. F -> ( F ` x ) = w ) ) |
| 38 | 37 | exp32 | |- ( Fun F -> ( x = |^| |^| y -> ( y = <. z , w >. -> ( y e. F -> ( F ` x ) = w ) ) ) ) |
| 39 | 38 | com24 | |- ( Fun F -> ( y e. F -> ( y = <. z , w >. -> ( x = |^| |^| y -> ( F ` x ) = w ) ) ) ) |
| 40 | 39 | imp43 | |- ( ( ( Fun F /\ y e. F ) /\ ( y = <. z , w >. /\ x = |^| |^| y ) ) -> ( F ` x ) = w ) |
| 41 | 40 | opeq2d | |- ( ( ( Fun F /\ y e. F ) /\ ( y = <. z , w >. /\ x = |^| |^| y ) ) -> <. x , ( F ` x ) >. = <. x , w >. ) |
| 42 | 32 41 | eqtr4d | |- ( ( ( Fun F /\ y e. F ) /\ ( y = <. z , w >. /\ x = |^| |^| y ) ) -> y = <. x , ( F ` x ) >. ) |
| 43 | 42 | exp32 | |- ( ( Fun F /\ y e. F ) -> ( y = <. z , w >. -> ( x = |^| |^| y -> y = <. x , ( F ` x ) >. ) ) ) |
| 44 | 43 | exlimdvv | |- ( ( Fun F /\ y e. F ) -> ( E. z E. w y = <. z , w >. -> ( x = |^| |^| y -> y = <. x , ( F ` x ) >. ) ) ) |
| 45 | 15 44 | mpd | |- ( ( Fun F /\ y e. F ) -> ( x = |^| |^| y -> y = <. x , ( F ` x ) >. ) ) |
| 46 | 45 | adantrl | |- ( ( Fun F /\ ( x e. dom F /\ y e. F ) ) -> ( x = |^| |^| y -> y = <. x , ( F ` x ) >. ) ) |
| 47 | inteq | |- ( y = <. x , ( F ` x ) >. -> |^| y = |^| <. x , ( F ` x ) >. ) |
|
| 48 | 47 | inteqd | |- ( y = <. x , ( F ` x ) >. -> |^| |^| y = |^| |^| <. x , ( F ` x ) >. ) |
| 49 | vex | |- x e. _V |
|
| 50 | fvex | |- ( F ` x ) e. _V |
|
| 51 | 49 50 | op1stb | |- |^| |^| <. x , ( F ` x ) >. = x |
| 52 | 48 51 | eqtr2di | |- ( y = <. x , ( F ` x ) >. -> x = |^| |^| y ) |
| 53 | 46 52 | impbid1 | |- ( ( Fun F /\ ( x e. dom F /\ y e. F ) ) -> ( x = |^| |^| y <-> y = <. x , ( F ` x ) >. ) ) |
| 54 | 53 | ex | |- ( Fun F -> ( ( x e. dom F /\ y e. F ) -> ( x = |^| |^| y <-> y = <. x , ( F ` x ) >. ) ) ) |
| 55 | 3 4 6 10 54 | en3d | |- ( Fun F -> dom F ~~ F ) |