This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of Mendelson p. 254. (Contributed by NM, 27-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpcomeng | |- ( ( A e. V /\ B e. W ) -> ( A X. B ) ~~ ( B X. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 | |- ( x = A -> ( x X. y ) = ( A X. y ) ) |
|
| 2 | xpeq2 | |- ( x = A -> ( y X. x ) = ( y X. A ) ) |
|
| 3 | 1 2 | breq12d | |- ( x = A -> ( ( x X. y ) ~~ ( y X. x ) <-> ( A X. y ) ~~ ( y X. A ) ) ) |
| 4 | xpeq2 | |- ( y = B -> ( A X. y ) = ( A X. B ) ) |
|
| 5 | xpeq1 | |- ( y = B -> ( y X. A ) = ( B X. A ) ) |
|
| 6 | 4 5 | breq12d | |- ( y = B -> ( ( A X. y ) ~~ ( y X. A ) <-> ( A X. B ) ~~ ( B X. A ) ) ) |
| 7 | vex | |- x e. _V |
|
| 8 | vex | |- y e. _V |
|
| 9 | 7 8 | xpcomen | |- ( x X. y ) ~~ ( y X. x ) |
| 10 | 3 6 9 | vtocl2g | |- ( ( A e. V /\ B e. W ) -> ( A X. B ) ~~ ( B X. A ) ) |