This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set exponentiation dominates the base. (Contributed by Mario Carneiro, 30-Apr-2015) (Proof shortened by AV, 17-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapdom3 | |- ( ( A e. V /\ B e. W /\ B =/= (/) ) -> A ~<_ ( A ^m B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | |- ( B =/= (/) <-> E. x x e. B ) |
|
| 2 | simp1 | |- ( ( A e. V /\ B e. W /\ x e. B ) -> A e. V ) |
|
| 3 | simp3 | |- ( ( A e. V /\ B e. W /\ x e. B ) -> x e. B ) |
|
| 4 | 2 3 | mapsnend | |- ( ( A e. V /\ B e. W /\ x e. B ) -> ( A ^m { x } ) ~~ A ) |
| 5 | 4 | ensymd | |- ( ( A e. V /\ B e. W /\ x e. B ) -> A ~~ ( A ^m { x } ) ) |
| 6 | simp2 | |- ( ( A e. V /\ B e. W /\ x e. B ) -> B e. W ) |
|
| 7 | 3 | snssd | |- ( ( A e. V /\ B e. W /\ x e. B ) -> { x } C_ B ) |
| 8 | ssdomg | |- ( B e. W -> ( { x } C_ B -> { x } ~<_ B ) ) |
|
| 9 | 6 7 8 | sylc | |- ( ( A e. V /\ B e. W /\ x e. B ) -> { x } ~<_ B ) |
| 10 | vex | |- x e. _V |
|
| 11 | 10 | snnz | |- { x } =/= (/) |
| 12 | simpl | |- ( ( { x } = (/) /\ A = (/) ) -> { x } = (/) ) |
|
| 13 | 12 | necon3ai | |- ( { x } =/= (/) -> -. ( { x } = (/) /\ A = (/) ) ) |
| 14 | 11 13 | ax-mp | |- -. ( { x } = (/) /\ A = (/) ) |
| 15 | mapdom2 | |- ( ( { x } ~<_ B /\ -. ( { x } = (/) /\ A = (/) ) ) -> ( A ^m { x } ) ~<_ ( A ^m B ) ) |
|
| 16 | 9 14 15 | sylancl | |- ( ( A e. V /\ B e. W /\ x e. B ) -> ( A ^m { x } ) ~<_ ( A ^m B ) ) |
| 17 | endomtr | |- ( ( A ~~ ( A ^m { x } ) /\ ( A ^m { x } ) ~<_ ( A ^m B ) ) -> A ~<_ ( A ^m B ) ) |
|
| 18 | 5 16 17 | syl2anc | |- ( ( A e. V /\ B e. W /\ x e. B ) -> A ~<_ ( A ^m B ) ) |
| 19 | 18 | 3expia | |- ( ( A e. V /\ B e. W ) -> ( x e. B -> A ~<_ ( A ^m B ) ) ) |
| 20 | 19 | exlimdv | |- ( ( A e. V /\ B e. W ) -> ( E. x x e. B -> A ~<_ ( A ^m B ) ) ) |
| 21 | 1 20 | biimtrid | |- ( ( A e. V /\ B e. W ) -> ( B =/= (/) -> A ~<_ ( A ^m B ) ) ) |
| 22 | 21 | 3impia | |- ( ( A e. V /\ B e. W /\ B =/= (/) ) -> A ~<_ ( A ^m B ) ) |