This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption law for addition to an infinite cardinal. (Contributed by NM, 30-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infdjuabs | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A |_| B ) ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> B ~<_ A ) |
|
| 2 | reldom | |- Rel ~<_ |
|
| 3 | 2 | brrelex2i | |- ( B ~<_ A -> A e. _V ) |
| 4 | djudom2 | |- ( ( B ~<_ A /\ A e. _V ) -> ( A |_| B ) ~<_ ( A |_| A ) ) |
|
| 5 | 1 3 4 | syl2anc2 | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A |_| B ) ~<_ ( A |_| A ) ) |
| 6 | xp2dju | |- ( 2o X. A ) = ( A |_| A ) |
|
| 7 | 5 6 | breqtrrdi | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A |_| B ) ~<_ ( 2o X. A ) ) |
| 8 | simp1 | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> A e. dom card ) |
|
| 9 | 2onn | |- 2o e. _om |
|
| 10 | nnsdom | |- ( 2o e. _om -> 2o ~< _om ) |
|
| 11 | sdomdom | |- ( 2o ~< _om -> 2o ~<_ _om ) |
|
| 12 | 9 10 11 | mp2b | |- 2o ~<_ _om |
| 13 | simp2 | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> _om ~<_ A ) |
|
| 14 | domtr | |- ( ( 2o ~<_ _om /\ _om ~<_ A ) -> 2o ~<_ A ) |
|
| 15 | 12 13 14 | sylancr | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> 2o ~<_ A ) |
| 16 | xpdom1g | |- ( ( A e. dom card /\ 2o ~<_ A ) -> ( 2o X. A ) ~<_ ( A X. A ) ) |
|
| 17 | 8 15 16 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( 2o X. A ) ~<_ ( A X. A ) ) |
| 18 | domtr | |- ( ( ( A |_| B ) ~<_ ( 2o X. A ) /\ ( 2o X. A ) ~<_ ( A X. A ) ) -> ( A |_| B ) ~<_ ( A X. A ) ) |
|
| 19 | 7 17 18 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A |_| B ) ~<_ ( A X. A ) ) |
| 20 | infxpidm2 | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( A X. A ) ~~ A ) |
|
| 21 | 20 | 3adant3 | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A X. A ) ~~ A ) |
| 22 | domentr | |- ( ( ( A |_| B ) ~<_ ( A X. A ) /\ ( A X. A ) ~~ A ) -> ( A |_| B ) ~<_ A ) |
|
| 23 | 19 21 22 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A |_| B ) ~<_ A ) |
| 24 | 2 | brrelex1i | |- ( B ~<_ A -> B e. _V ) |
| 25 | 24 | 3ad2ant3 | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> B e. _V ) |
| 26 | djudoml | |- ( ( A e. dom card /\ B e. _V ) -> A ~<_ ( A |_| B ) ) |
|
| 27 | 8 25 26 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> A ~<_ ( A |_| B ) ) |
| 28 | sbth | |- ( ( ( A |_| B ) ~<_ A /\ A ~<_ ( A |_| B ) ) -> ( A |_| B ) ~~ A ) |
|
| 29 | 23 27 28 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A |_| B ) ~~ A ) |