This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cardinality ordering for an infinite class difference. (Contributed by NM, 24-Mar-2007) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infdif2 | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( ( A \ B ) ~<_ B <-> A ~<_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnsym | |- ( ( A \ B ) ~<_ B -> -. B ~< ( A \ B ) ) |
|
| 2 | simp3 | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B ~< A ) |
|
| 3 | infdif | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) ~~ A ) |
|
| 4 | 3 | ensymd | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A ~~ ( A \ B ) ) |
| 5 | sdomentr | |- ( ( B ~< A /\ A ~~ ( A \ B ) ) -> B ~< ( A \ B ) ) |
|
| 6 | 2 4 5 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B ~< ( A \ B ) ) |
| 7 | 1 6 | nsyl3 | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> -. ( A \ B ) ~<_ B ) |
| 8 | 7 | 3expia | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( B ~< A -> -. ( A \ B ) ~<_ B ) ) |
| 9 | 8 | 3adant2 | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( B ~< A -> -. ( A \ B ) ~<_ B ) ) |
| 10 | 9 | con2d | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( ( A \ B ) ~<_ B -> -. B ~< A ) ) |
| 11 | domtri2 | |- ( ( A e. dom card /\ B e. dom card ) -> ( A ~<_ B <-> -. B ~< A ) ) |
|
| 12 | 11 | 3adant3 | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A ~<_ B <-> -. B ~< A ) ) |
| 13 | 10 12 | sylibrd | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( ( A \ B ) ~<_ B -> A ~<_ B ) ) |
| 14 | simp1 | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> A e. dom card ) |
|
| 15 | difss | |- ( A \ B ) C_ A |
|
| 16 | ssdomg | |- ( A e. dom card -> ( ( A \ B ) C_ A -> ( A \ B ) ~<_ A ) ) |
|
| 17 | 14 15 16 | mpisyl | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A \ B ) ~<_ A ) |
| 18 | domtr | |- ( ( ( A \ B ) ~<_ A /\ A ~<_ B ) -> ( A \ B ) ~<_ B ) |
|
| 19 | 18 | ex | |- ( ( A \ B ) ~<_ A -> ( A ~<_ B -> ( A \ B ) ~<_ B ) ) |
| 20 | 17 19 | syl | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A ~<_ B -> ( A \ B ) ~<_ B ) ) |
| 21 | 13 20 | impbid | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( ( A \ B ) ~<_ B <-> A ~<_ B ) ) |