This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
||
| inf3lem.3 | |- A e. _V |
||
| inf3lem.4 | |- B e. _V |
||
| Assertion | inf3lem2 | |- ( ( x =/= (/) /\ x C_ U. x ) -> ( A e. _om -> ( F ` A ) =/= x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| 2 | inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
|
| 3 | inf3lem.3 | |- A e. _V |
|
| 4 | inf3lem.4 | |- B e. _V |
|
| 5 | fveq2 | |- ( v = (/) -> ( F ` v ) = ( F ` (/) ) ) |
|
| 6 | 5 | neeq1d | |- ( v = (/) -> ( ( F ` v ) =/= x <-> ( F ` (/) ) =/= x ) ) |
| 7 | 6 | imbi2d | |- ( v = (/) -> ( ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` v ) =/= x ) <-> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` (/) ) =/= x ) ) ) |
| 8 | fveq2 | |- ( v = u -> ( F ` v ) = ( F ` u ) ) |
|
| 9 | 8 | neeq1d | |- ( v = u -> ( ( F ` v ) =/= x <-> ( F ` u ) =/= x ) ) |
| 10 | 9 | imbi2d | |- ( v = u -> ( ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` v ) =/= x ) <-> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` u ) =/= x ) ) ) |
| 11 | fveq2 | |- ( v = suc u -> ( F ` v ) = ( F ` suc u ) ) |
|
| 12 | 11 | neeq1d | |- ( v = suc u -> ( ( F ` v ) =/= x <-> ( F ` suc u ) =/= x ) ) |
| 13 | 12 | imbi2d | |- ( v = suc u -> ( ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` v ) =/= x ) <-> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` suc u ) =/= x ) ) ) |
| 14 | fveq2 | |- ( v = A -> ( F ` v ) = ( F ` A ) ) |
|
| 15 | 14 | neeq1d | |- ( v = A -> ( ( F ` v ) =/= x <-> ( F ` A ) =/= x ) ) |
| 16 | 15 | imbi2d | |- ( v = A -> ( ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` v ) =/= x ) <-> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` A ) =/= x ) ) ) |
| 17 | 1 2 3 4 | inf3lemb | |- ( F ` (/) ) = (/) |
| 18 | 17 | eqeq1i | |- ( ( F ` (/) ) = x <-> (/) = x ) |
| 19 | eqcom | |- ( (/) = x <-> x = (/) ) |
|
| 20 | 18 19 | sylbb | |- ( ( F ` (/) ) = x -> x = (/) ) |
| 21 | 20 | necon3i | |- ( x =/= (/) -> ( F ` (/) ) =/= x ) |
| 22 | 21 | adantr | |- ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` (/) ) =/= x ) |
| 23 | vex | |- u e. _V |
|
| 24 | 1 2 23 4 | inf3lemd | |- ( u e. _om -> ( F ` u ) C_ x ) |
| 25 | df-pss | |- ( ( F ` u ) C. x <-> ( ( F ` u ) C_ x /\ ( F ` u ) =/= x ) ) |
|
| 26 | pssnel | |- ( ( F ` u ) C. x -> E. v ( v e. x /\ -. v e. ( F ` u ) ) ) |
|
| 27 | 25 26 | sylbir | |- ( ( ( F ` u ) C_ x /\ ( F ` u ) =/= x ) -> E. v ( v e. x /\ -. v e. ( F ` u ) ) ) |
| 28 | ssel | |- ( x C_ U. x -> ( v e. x -> v e. U. x ) ) |
|
| 29 | eluni | |- ( v e. U. x <-> E. f ( v e. f /\ f e. x ) ) |
|
| 30 | 28 29 | imbitrdi | |- ( x C_ U. x -> ( v e. x -> E. f ( v e. f /\ f e. x ) ) ) |
| 31 | eleq2 | |- ( ( F ` suc u ) = x -> ( f e. ( F ` suc u ) <-> f e. x ) ) |
|
| 32 | 31 | biimparc | |- ( ( f e. x /\ ( F ` suc u ) = x ) -> f e. ( F ` suc u ) ) |
| 33 | 1 2 23 4 | inf3lemc | |- ( u e. _om -> ( F ` suc u ) = ( G ` ( F ` u ) ) ) |
| 34 | 33 | eleq2d | |- ( u e. _om -> ( f e. ( F ` suc u ) <-> f e. ( G ` ( F ` u ) ) ) ) |
| 35 | elin | |- ( v e. ( f i^i x ) <-> ( v e. f /\ v e. x ) ) |
|
| 36 | vex | |- f e. _V |
|
| 37 | fvex | |- ( F ` u ) e. _V |
|
| 38 | 1 2 36 37 | inf3lema | |- ( f e. ( G ` ( F ` u ) ) <-> ( f e. x /\ ( f i^i x ) C_ ( F ` u ) ) ) |
| 39 | 38 | simprbi | |- ( f e. ( G ` ( F ` u ) ) -> ( f i^i x ) C_ ( F ` u ) ) |
| 40 | 39 | sseld | |- ( f e. ( G ` ( F ` u ) ) -> ( v e. ( f i^i x ) -> v e. ( F ` u ) ) ) |
| 41 | 35 40 | biimtrrid | |- ( f e. ( G ` ( F ` u ) ) -> ( ( v e. f /\ v e. x ) -> v e. ( F ` u ) ) ) |
| 42 | 34 41 | biimtrdi | |- ( u e. _om -> ( f e. ( F ` suc u ) -> ( ( v e. f /\ v e. x ) -> v e. ( F ` u ) ) ) ) |
| 43 | 32 42 | syl5 | |- ( u e. _om -> ( ( f e. x /\ ( F ` suc u ) = x ) -> ( ( v e. f /\ v e. x ) -> v e. ( F ` u ) ) ) ) |
| 44 | 43 | com23 | |- ( u e. _om -> ( ( v e. f /\ v e. x ) -> ( ( f e. x /\ ( F ` suc u ) = x ) -> v e. ( F ` u ) ) ) ) |
| 45 | 44 | exp5c | |- ( u e. _om -> ( v e. f -> ( v e. x -> ( f e. x -> ( ( F ` suc u ) = x -> v e. ( F ` u ) ) ) ) ) ) |
| 46 | 45 | com34 | |- ( u e. _om -> ( v e. f -> ( f e. x -> ( v e. x -> ( ( F ` suc u ) = x -> v e. ( F ` u ) ) ) ) ) ) |
| 47 | 46 | impd | |- ( u e. _om -> ( ( v e. f /\ f e. x ) -> ( v e. x -> ( ( F ` suc u ) = x -> v e. ( F ` u ) ) ) ) ) |
| 48 | 47 | exlimdv | |- ( u e. _om -> ( E. f ( v e. f /\ f e. x ) -> ( v e. x -> ( ( F ` suc u ) = x -> v e. ( F ` u ) ) ) ) ) |
| 49 | 30 48 | sylan9r | |- ( ( u e. _om /\ x C_ U. x ) -> ( v e. x -> ( v e. x -> ( ( F ` suc u ) = x -> v e. ( F ` u ) ) ) ) ) |
| 50 | 49 | pm2.43d | |- ( ( u e. _om /\ x C_ U. x ) -> ( v e. x -> ( ( F ` suc u ) = x -> v e. ( F ` u ) ) ) ) |
| 51 | id | |- ( ( ( F ` suc u ) = x -> v e. ( F ` u ) ) -> ( ( F ` suc u ) = x -> v e. ( F ` u ) ) ) |
|
| 52 | 51 | necon3bd | |- ( ( ( F ` suc u ) = x -> v e. ( F ` u ) ) -> ( -. v e. ( F ` u ) -> ( F ` suc u ) =/= x ) ) |
| 53 | 50 52 | syl6 | |- ( ( u e. _om /\ x C_ U. x ) -> ( v e. x -> ( -. v e. ( F ` u ) -> ( F ` suc u ) =/= x ) ) ) |
| 54 | 53 | impd | |- ( ( u e. _om /\ x C_ U. x ) -> ( ( v e. x /\ -. v e. ( F ` u ) ) -> ( F ` suc u ) =/= x ) ) |
| 55 | 54 | exlimdv | |- ( ( u e. _om /\ x C_ U. x ) -> ( E. v ( v e. x /\ -. v e. ( F ` u ) ) -> ( F ` suc u ) =/= x ) ) |
| 56 | 27 55 | syl5 | |- ( ( u e. _om /\ x C_ U. x ) -> ( ( ( F ` u ) C_ x /\ ( F ` u ) =/= x ) -> ( F ` suc u ) =/= x ) ) |
| 57 | 24 56 | sylani | |- ( ( u e. _om /\ x C_ U. x ) -> ( ( u e. _om /\ ( F ` u ) =/= x ) -> ( F ` suc u ) =/= x ) ) |
| 58 | 57 | exp4b | |- ( u e. _om -> ( x C_ U. x -> ( u e. _om -> ( ( F ` u ) =/= x -> ( F ` suc u ) =/= x ) ) ) ) |
| 59 | 58 | pm2.43a | |- ( u e. _om -> ( x C_ U. x -> ( ( F ` u ) =/= x -> ( F ` suc u ) =/= x ) ) ) |
| 60 | 59 | adantld | |- ( u e. _om -> ( ( x =/= (/) /\ x C_ U. x ) -> ( ( F ` u ) =/= x -> ( F ` suc u ) =/= x ) ) ) |
| 61 | 60 | a2d | |- ( u e. _om -> ( ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` u ) =/= x ) -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` suc u ) =/= x ) ) ) |
| 62 | 7 10 13 16 22 61 | finds | |- ( A e. _om -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` A ) =/= x ) ) |
| 63 | 62 | com12 | |- ( ( x =/= (/) /\ x C_ U. x ) -> ( A e. _om -> ( F ` A ) =/= x ) ) |