This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
||
| inf3lem.3 | |- A e. _V |
||
| inf3lem.4 | |- B e. _V |
||
| Assertion | inf3lemc | |- ( A e. _om -> ( F ` suc A ) = ( G ` ( F ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| 2 | inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
|
| 3 | inf3lem.3 | |- A e. _V |
|
| 4 | inf3lem.4 | |- B e. _V |
|
| 5 | frsuc | |- ( A e. _om -> ( ( rec ( G , (/) ) |` _om ) ` suc A ) = ( G ` ( ( rec ( G , (/) ) |` _om ) ` A ) ) ) |
|
| 6 | 2 | fveq1i | |- ( F ` suc A ) = ( ( rec ( G , (/) ) |` _om ) ` suc A ) |
| 7 | 2 | fveq1i | |- ( F ` A ) = ( ( rec ( G , (/) ) |` _om ) ` A ) |
| 8 | 7 | fveq2i | |- ( G ` ( F ` A ) ) = ( G ` ( ( rec ( G , (/) ) |` _om ) ` A ) ) |
| 9 | 5 6 8 | 3eqtr4g | |- ( A e. _om -> ( F ` suc A ) = ( G ` ( F ` A ) ) ) |