This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
||
| inf3lem.3 | |- A e. _V |
||
| inf3lem.4 | |- B e. _V |
||
| Assertion | inf3lema | |- ( A e. ( G ` B ) <-> ( A e. x /\ ( A i^i x ) C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| 2 | inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
|
| 3 | inf3lem.3 | |- A e. _V |
|
| 4 | inf3lem.4 | |- B e. _V |
|
| 5 | ineq1 | |- ( f = A -> ( f i^i x ) = ( A i^i x ) ) |
|
| 6 | 5 | sseq1d | |- ( f = A -> ( ( f i^i x ) C_ B <-> ( A i^i x ) C_ B ) ) |
| 7 | sseq2 | |- ( v = B -> ( ( f i^i x ) C_ v <-> ( f i^i x ) C_ B ) ) |
|
| 8 | 7 | rabbidv | |- ( v = B -> { f e. x | ( f i^i x ) C_ v } = { f e. x | ( f i^i x ) C_ B } ) |
| 9 | sseq2 | |- ( y = v -> ( ( w i^i x ) C_ y <-> ( w i^i x ) C_ v ) ) |
|
| 10 | 9 | rabbidv | |- ( y = v -> { w e. x | ( w i^i x ) C_ y } = { w e. x | ( w i^i x ) C_ v } ) |
| 11 | ineq1 | |- ( w = f -> ( w i^i x ) = ( f i^i x ) ) |
|
| 12 | 11 | sseq1d | |- ( w = f -> ( ( w i^i x ) C_ v <-> ( f i^i x ) C_ v ) ) |
| 13 | 12 | cbvrabv | |- { w e. x | ( w i^i x ) C_ v } = { f e. x | ( f i^i x ) C_ v } |
| 14 | 10 13 | eqtrdi | |- ( y = v -> { w e. x | ( w i^i x ) C_ y } = { f e. x | ( f i^i x ) C_ v } ) |
| 15 | 14 | cbvmptv | |- ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) = ( v e. _V |-> { f e. x | ( f i^i x ) C_ v } ) |
| 16 | 1 15 | eqtri | |- G = ( v e. _V |-> { f e. x | ( f i^i x ) C_ v } ) |
| 17 | vex | |- x e. _V |
|
| 18 | 17 | rabex | |- { f e. x | ( f i^i x ) C_ B } e. _V |
| 19 | 8 16 18 | fvmpt | |- ( B e. _V -> ( G ` B ) = { f e. x | ( f i^i x ) C_ B } ) |
| 20 | 4 19 | ax-mp | |- ( G ` B ) = { f e. x | ( f i^i x ) C_ B } |
| 21 | 6 20 | elrab2 | |- ( A e. ( G ` B ) <-> ( A e. x /\ ( A i^i x ) C_ B ) ) |