This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
||
| inf3lem.3 | |- A e. _V |
||
| inf3lem.4 | |- B e. _V |
||
| Assertion | inf3lemd | |- ( A e. _om -> ( F ` A ) C_ x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| 2 | inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
|
| 3 | inf3lem.3 | |- A e. _V |
|
| 4 | inf3lem.4 | |- B e. _V |
|
| 5 | fveq2 | |- ( A = (/) -> ( F ` A ) = ( F ` (/) ) ) |
|
| 6 | 1 2 3 4 | inf3lemb | |- ( F ` (/) ) = (/) |
| 7 | 5 6 | eqtrdi | |- ( A = (/) -> ( F ` A ) = (/) ) |
| 8 | 0ss | |- (/) C_ x |
|
| 9 | 7 8 | eqsstrdi | |- ( A = (/) -> ( F ` A ) C_ x ) |
| 10 | 9 | a1d | |- ( A = (/) -> ( A e. _om -> ( F ` A ) C_ x ) ) |
| 11 | nnsuc | |- ( ( A e. _om /\ A =/= (/) ) -> E. v e. _om A = suc v ) |
|
| 12 | vex | |- v e. _V |
|
| 13 | 1 2 12 4 | inf3lemc | |- ( v e. _om -> ( F ` suc v ) = ( G ` ( F ` v ) ) ) |
| 14 | 13 | eleq2d | |- ( v e. _om -> ( u e. ( F ` suc v ) <-> u e. ( G ` ( F ` v ) ) ) ) |
| 15 | vex | |- u e. _V |
|
| 16 | fvex | |- ( F ` v ) e. _V |
|
| 17 | 1 2 15 16 | inf3lema | |- ( u e. ( G ` ( F ` v ) ) <-> ( u e. x /\ ( u i^i x ) C_ ( F ` v ) ) ) |
| 18 | 17 | simplbi | |- ( u e. ( G ` ( F ` v ) ) -> u e. x ) |
| 19 | 14 18 | biimtrdi | |- ( v e. _om -> ( u e. ( F ` suc v ) -> u e. x ) ) |
| 20 | 19 | ssrdv | |- ( v e. _om -> ( F ` suc v ) C_ x ) |
| 21 | fveq2 | |- ( A = suc v -> ( F ` A ) = ( F ` suc v ) ) |
|
| 22 | 21 | sseq1d | |- ( A = suc v -> ( ( F ` A ) C_ x <-> ( F ` suc v ) C_ x ) ) |
| 23 | 20 22 | syl5ibrcom | |- ( v e. _om -> ( A = suc v -> ( F ` A ) C_ x ) ) |
| 24 | 23 | rexlimiv | |- ( E. v e. _om A = suc v -> ( F ` A ) C_ x ) |
| 25 | 11 24 | syl | |- ( ( A e. _om /\ A =/= (/) ) -> ( F ` A ) C_ x ) |
| 26 | 25 | expcom | |- ( A =/= (/) -> ( A e. _om -> ( F ` A ) C_ x ) ) |
| 27 | 10 26 | pm2.61ine | |- ( A e. _om -> ( F ` A ) C_ x ) |