This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in class union. (Contributed by NM, 22-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluni | |- ( A e. U. B <-> E. x ( A e. x /\ x e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. U. B -> A e. _V ) |
|
| 2 | elex | |- ( A e. x -> A e. _V ) |
|
| 3 | 2 | adantr | |- ( ( A e. x /\ x e. B ) -> A e. _V ) |
| 4 | 3 | exlimiv | |- ( E. x ( A e. x /\ x e. B ) -> A e. _V ) |
| 5 | eleq1 | |- ( y = A -> ( y e. x <-> A e. x ) ) |
|
| 6 | 5 | anbi1d | |- ( y = A -> ( ( y e. x /\ x e. B ) <-> ( A e. x /\ x e. B ) ) ) |
| 7 | 6 | exbidv | |- ( y = A -> ( E. x ( y e. x /\ x e. B ) <-> E. x ( A e. x /\ x e. B ) ) ) |
| 8 | df-uni | |- U. B = { y | E. x ( y e. x /\ x e. B ) } |
|
| 9 | 7 8 | elab2g | |- ( A e. _V -> ( A e. U. B <-> E. x ( A e. x /\ x e. B ) ) ) |
| 10 | 1 4 9 | pm5.21nii | |- ( A e. U. B <-> E. x ( A e. x /\ x e. B ) ) |