This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image structure of a non-unital ring is a non-unital ring ( imasring analog). (Contributed by AV, 22-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasrng.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasrng.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasrng.p | |- .+ = ( +g ` R ) |
||
| imasrng.t | |- .x. = ( .r ` R ) |
||
| imasrng.f | |- ( ph -> F : V -onto-> B ) |
||
| imasrng.e1 | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
||
| imasrng.e2 | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
||
| imasrng.r | |- ( ph -> R e. Rng ) |
||
| Assertion | imasrng | |- ( ph -> U e. Rng ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasrng.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasrng.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasrng.p | |- .+ = ( +g ` R ) |
|
| 4 | imasrng.t | |- .x. = ( .r ` R ) |
|
| 5 | imasrng.f | |- ( ph -> F : V -onto-> B ) |
|
| 6 | imasrng.e1 | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
|
| 7 | imasrng.e2 | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
|
| 8 | imasrng.r | |- ( ph -> R e. Rng ) |
|
| 9 | 1 2 5 8 | imasbas | |- ( ph -> B = ( Base ` U ) ) |
| 10 | eqidd | |- ( ph -> ( +g ` U ) = ( +g ` U ) ) |
|
| 11 | eqidd | |- ( ph -> ( .r ` U ) = ( .r ` U ) ) |
|
| 12 | 3 | a1i | |- ( ph -> .+ = ( +g ` R ) ) |
| 13 | rngabl | |- ( R e. Rng -> R e. Abel ) |
|
| 14 | 8 13 | syl | |- ( ph -> R e. Abel ) |
| 15 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 16 | 1 2 12 5 6 14 15 | imasabl | |- ( ph -> ( U e. Abel /\ ( F ` ( 0g ` R ) ) = ( 0g ` U ) ) ) |
| 17 | 16 | simpld | |- ( ph -> U e. Abel ) |
| 18 | eqid | |- ( .r ` U ) = ( .r ` U ) |
|
| 19 | 8 | adantr | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> R e. Rng ) |
| 20 | simprl | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> u e. V ) |
|
| 21 | 2 | adantr | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> V = ( Base ` R ) ) |
| 22 | 20 21 | eleqtrd | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> u e. ( Base ` R ) ) |
| 23 | simprr | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> v e. V ) |
|
| 24 | 23 21 | eleqtrd | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> v e. ( Base ` R ) ) |
| 25 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 26 | 25 4 | rngcl | |- ( ( R e. Rng /\ u e. ( Base ` R ) /\ v e. ( Base ` R ) ) -> ( u .x. v ) e. ( Base ` R ) ) |
| 27 | 19 22 24 26 | syl3anc | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> ( u .x. v ) e. ( Base ` R ) ) |
| 28 | 27 21 | eleqtrrd | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> ( u .x. v ) e. V ) |
| 29 | 28 | caovclg | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .x. q ) e. V ) |
| 30 | 5 7 1 2 8 4 18 29 | imasmulf | |- ( ph -> ( .r ` U ) : ( B X. B ) --> B ) |
| 31 | 30 | fovcld | |- ( ( ph /\ u e. B /\ v e. B ) -> ( u ( .r ` U ) v ) e. B ) |
| 32 | forn | |- ( F : V -onto-> B -> ran F = B ) |
|
| 33 | 5 32 | syl | |- ( ph -> ran F = B ) |
| 34 | 33 | eleq2d | |- ( ph -> ( u e. ran F <-> u e. B ) ) |
| 35 | 33 | eleq2d | |- ( ph -> ( v e. ran F <-> v e. B ) ) |
| 36 | 33 | eleq2d | |- ( ph -> ( w e. ran F <-> w e. B ) ) |
| 37 | 34 35 36 | 3anbi123d | |- ( ph -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( u e. B /\ v e. B /\ w e. B ) ) ) |
| 38 | fofn | |- ( F : V -onto-> B -> F Fn V ) |
|
| 39 | fvelrnb | |- ( F Fn V -> ( u e. ran F <-> E. x e. V ( F ` x ) = u ) ) |
|
| 40 | fvelrnb | |- ( F Fn V -> ( v e. ran F <-> E. y e. V ( F ` y ) = v ) ) |
|
| 41 | fvelrnb | |- ( F Fn V -> ( w e. ran F <-> E. z e. V ( F ` z ) = w ) ) |
|
| 42 | 39 40 41 | 3anbi123d | |- ( F Fn V -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 43 | 5 38 42 | 3syl | |- ( ph -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 44 | 37 43 | bitr3d | |- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 45 | 3reeanv | |- ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) |
|
| 46 | 44 45 | bitr4di | |- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) <-> E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) ) ) |
| 47 | 8 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> R e. Rng ) |
| 48 | simp2 | |- ( ( ph /\ x e. V /\ y e. V ) -> x e. V ) |
|
| 49 | 2 | 3ad2ant1 | |- ( ( ph /\ x e. V /\ y e. V ) -> V = ( Base ` R ) ) |
| 50 | 48 49 | eleqtrd | |- ( ( ph /\ x e. V /\ y e. V ) -> x e. ( Base ` R ) ) |
| 51 | 50 | 3adant3r3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x e. ( Base ` R ) ) |
| 52 | simp3 | |- ( ( ph /\ x e. V /\ y e. V ) -> y e. V ) |
|
| 53 | 52 49 | eleqtrd | |- ( ( ph /\ x e. V /\ y e. V ) -> y e. ( Base ` R ) ) |
| 54 | 53 | 3adant3r3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> y e. ( Base ` R ) ) |
| 55 | simpr3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. V ) |
|
| 56 | 2 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> V = ( Base ` R ) ) |
| 57 | 55 56 | eleqtrd | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. ( Base ` R ) ) |
| 58 | 25 4 | rngass | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
| 59 | 47 51 54 57 58 | syl13anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
| 60 | 59 | fveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .x. y ) .x. z ) ) = ( F ` ( x .x. ( y .x. z ) ) ) ) |
| 61 | simpl | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ph ) |
|
| 62 | 28 | caovclg | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .x. y ) e. V ) |
| 63 | 62 | 3adantr3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .x. y ) e. V ) |
| 64 | 5 7 1 2 8 4 18 | imasmulval | |- ( ( ph /\ ( x .x. y ) e. V /\ z e. V ) -> ( ( F ` ( x .x. y ) ) ( .r ` U ) ( F ` z ) ) = ( F ` ( ( x .x. y ) .x. z ) ) ) |
| 65 | 61 63 55 64 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .x. y ) ) ( .r ` U ) ( F ` z ) ) = ( F ` ( ( x .x. y ) .x. z ) ) ) |
| 66 | simpr1 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x e. V ) |
|
| 67 | 28 | caovclg | |- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( y .x. z ) e. V ) |
| 68 | 67 | 3adantr1 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( y .x. z ) e. V ) |
| 69 | 5 7 1 2 8 4 18 | imasmulval | |- ( ( ph /\ x e. V /\ ( y .x. z ) e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .x. z ) ) ) = ( F ` ( x .x. ( y .x. z ) ) ) ) |
| 70 | 61 66 68 69 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .x. z ) ) ) = ( F ` ( x .x. ( y .x. z ) ) ) ) |
| 71 | 60 65 70 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .x. y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` x ) ( .r ` U ) ( F ` ( y .x. z ) ) ) ) |
| 72 | 5 7 1 2 8 4 18 | imasmulval | |- ( ( ph /\ x e. V /\ y e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` y ) ) = ( F ` ( x .x. y ) ) ) |
| 73 | 72 | 3adant3r3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` y ) ) = ( F ` ( x .x. y ) ) ) |
| 74 | 73 | oveq1d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` ( x .x. y ) ) ( .r ` U ) ( F ` z ) ) ) |
| 75 | 5 7 1 2 8 4 18 | imasmulval | |- ( ( ph /\ y e. V /\ z e. V ) -> ( ( F ` y ) ( .r ` U ) ( F ` z ) ) = ( F ` ( y .x. z ) ) ) |
| 76 | 75 | 3adant3r1 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` y ) ( .r ` U ) ( F ` z ) ) = ( F ` ( y .x. z ) ) ) |
| 77 | 76 | oveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) = ( ( F ` x ) ( .r ` U ) ( F ` ( y .x. z ) ) ) ) |
| 78 | 71 74 77 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) ) |
| 79 | simp1 | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` x ) = u ) |
|
| 80 | simp2 | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` y ) = v ) |
|
| 81 | 79 80 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( .r ` U ) ( F ` y ) ) = ( u ( .r ` U ) v ) ) |
| 82 | simp3 | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` z ) = w ) |
|
| 83 | 81 82 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( u ( .r ` U ) v ) ( .r ` U ) w ) ) |
| 84 | 80 82 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` y ) ( .r ` U ) ( F ` z ) ) = ( v ( .r ` U ) w ) ) |
| 85 | 79 84 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) |
| 86 | 83 85 | eqeq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) <-> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 87 | 78 86 | syl5ibcom | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 88 | 87 | 3exp2 | |- ( ph -> ( x e. V -> ( y e. V -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) ) ) ) |
| 89 | 88 | imp32 | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) ) |
| 90 | 89 | rexlimdv | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 91 | 90 | rexlimdvva | |- ( ph -> ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 92 | 46 91 | sylbid | |- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 93 | 92 | imp | |- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) |
| 94 | 25 3 4 | rngdi | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
| 95 | 47 51 54 57 94 | syl13anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
| 96 | 95 | fveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( x .x. ( y .+ z ) ) ) = ( F ` ( ( x .x. y ) .+ ( x .x. z ) ) ) ) |
| 97 | 25 3 | rngacl | |- ( ( R e. Rng /\ u e. ( Base ` R ) /\ v e. ( Base ` R ) ) -> ( u .+ v ) e. ( Base ` R ) ) |
| 98 | 19 22 24 97 | syl3anc | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> ( u .+ v ) e. ( Base ` R ) ) |
| 99 | 98 21 | eleqtrrd | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> ( u .+ v ) e. V ) |
| 100 | 99 | caovclg | |- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( y .+ z ) e. V ) |
| 101 | 100 | 3adantr1 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( y .+ z ) e. V ) |
| 102 | 5 7 1 2 8 4 18 | imasmulval | |- ( ( ph /\ x e. V /\ ( y .+ z ) e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .+ z ) ) ) = ( F ` ( x .x. ( y .+ z ) ) ) ) |
| 103 | 61 66 101 102 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .+ z ) ) ) = ( F ` ( x .x. ( y .+ z ) ) ) ) |
| 104 | 28 | caovclg | |- ( ( ph /\ ( x e. V /\ z e. V ) ) -> ( x .x. z ) e. V ) |
| 105 | 104 | 3adantr2 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .x. z ) e. V ) |
| 106 | eqid | |- ( +g ` U ) = ( +g ` U ) |
|
| 107 | 5 6 1 2 8 3 106 | imasaddval | |- ( ( ph /\ ( x .x. y ) e. V /\ ( x .x. z ) e. V ) -> ( ( F ` ( x .x. y ) ) ( +g ` U ) ( F ` ( x .x. z ) ) ) = ( F ` ( ( x .x. y ) .+ ( x .x. z ) ) ) ) |
| 108 | 61 63 105 107 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .x. y ) ) ( +g ` U ) ( F ` ( x .x. z ) ) ) = ( F ` ( ( x .x. y ) .+ ( x .x. z ) ) ) ) |
| 109 | 96 103 108 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .+ z ) ) ) = ( ( F ` ( x .x. y ) ) ( +g ` U ) ( F ` ( x .x. z ) ) ) ) |
| 110 | 5 6 1 2 8 3 106 | imasaddval | |- ( ( ph /\ y e. V /\ z e. V ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) |
| 111 | 110 | 3adant3r1 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) |
| 112 | 111 | oveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( ( F ` x ) ( .r ` U ) ( F ` ( y .+ z ) ) ) ) |
| 113 | 5 7 1 2 8 4 18 | imasmulval | |- ( ( ph /\ x e. V /\ z e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` z ) ) = ( F ` ( x .x. z ) ) ) |
| 114 | 113 | 3adant3r2 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` z ) ) = ( F ` ( x .x. z ) ) ) |
| 115 | 73 114 | oveq12d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( +g ` U ) ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ) = ( ( F ` ( x .x. y ) ) ( +g ` U ) ( F ` ( x .x. z ) ) ) ) |
| 116 | 109 112 115 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( +g ` U ) ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ) ) |
| 117 | 80 82 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( v ( +g ` U ) w ) ) |
| 118 | 79 117 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( u ( .r ` U ) ( v ( +g ` U ) w ) ) ) |
| 119 | 79 82 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( .r ` U ) ( F ` z ) ) = ( u ( .r ` U ) w ) ) |
| 120 | 81 119 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( +g ` U ) ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) |
| 121 | 118 120 | eqeq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( +g ` U ) ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ) <-> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
| 122 | 116 121 | syl5ibcom | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
| 123 | 122 | 3exp2 | |- ( ph -> ( x e. V -> ( y e. V -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) ) ) ) |
| 124 | 123 | imp32 | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) ) |
| 125 | 124 | rexlimdv | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
| 126 | 125 | rexlimdvva | |- ( ph -> ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
| 127 | 46 126 | sylbid | |- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
| 128 | 127 | imp | |- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) |
| 129 | 25 3 4 | rngdir | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
| 130 | 47 51 54 57 129 | syl13anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
| 131 | 130 | fveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) .x. z ) ) = ( F ` ( ( x .x. z ) .+ ( y .x. z ) ) ) ) |
| 132 | 99 | caovclg | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .+ y ) e. V ) |
| 133 | 132 | 3adantr3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ y ) e. V ) |
| 134 | 5 7 1 2 8 4 18 | imasmulval | |- ( ( ph /\ ( x .+ y ) e. V /\ z e. V ) -> ( ( F ` ( x .+ y ) ) ( .r ` U ) ( F ` z ) ) = ( F ` ( ( x .+ y ) .x. z ) ) ) |
| 135 | 61 133 55 134 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .+ y ) ) ( .r ` U ) ( F ` z ) ) = ( F ` ( ( x .+ y ) .x. z ) ) ) |
| 136 | 5 6 1 2 8 3 106 | imasaddval | |- ( ( ph /\ ( x .x. z ) e. V /\ ( y .x. z ) e. V ) -> ( ( F ` ( x .x. z ) ) ( +g ` U ) ( F ` ( y .x. z ) ) ) = ( F ` ( ( x .x. z ) .+ ( y .x. z ) ) ) ) |
| 137 | 61 105 68 136 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .x. z ) ) ( +g ` U ) ( F ` ( y .x. z ) ) ) = ( F ` ( ( x .x. z ) .+ ( y .x. z ) ) ) ) |
| 138 | 131 135 137 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .+ y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` ( x .x. z ) ) ( +g ` U ) ( F ` ( y .x. z ) ) ) ) |
| 139 | 5 6 1 2 8 3 106 | imasaddval | |- ( ( ph /\ x e. V /\ y e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) |
| 140 | 139 | 3adant3r3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) |
| 141 | 140 | oveq1d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` ( x .+ y ) ) ( .r ` U ) ( F ` z ) ) ) |
| 142 | 114 76 | oveq12d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ( +g ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) = ( ( F ` ( x .x. z ) ) ( +g ` U ) ( F ` ( y .x. z ) ) ) ) |
| 143 | 138 141 142 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ( +g ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) ) |
| 144 | 79 80 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( u ( +g ` U ) v ) ) |
| 145 | 144 82 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( u ( +g ` U ) v ) ( .r ` U ) w ) ) |
| 146 | 119 84 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ( +g ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) |
| 147 | 145 146 | eqeq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ( +g ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) <-> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 148 | 143 147 | syl5ibcom | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 149 | 148 | 3exp2 | |- ( ph -> ( x e. V -> ( y e. V -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) ) ) ) |
| 150 | 149 | imp32 | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) ) |
| 151 | 150 | rexlimdv | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 152 | 151 | rexlimdvva | |- ( ph -> ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 153 | 46 152 | sylbid | |- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 154 | 153 | imp | |- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) |
| 155 | 9 10 11 17 31 93 128 154 | isrngd | |- ( ph -> U e. Rng ) |