This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for the multiplication operation of a non-unital ring (left-distributivity). (Contributed by AV, 14-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngdi.b | |- B = ( Base ` R ) |
|
| rngdi.p | |- .+ = ( +g ` R ) |
||
| rngdi.t | |- .x. = ( .r ` R ) |
||
| Assertion | rngdi | |- ( ( R e. Rng /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .x. ( Y .+ Z ) ) = ( ( X .x. Y ) .+ ( X .x. Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngdi.b | |- B = ( Base ` R ) |
|
| 2 | rngdi.p | |- .+ = ( +g ` R ) |
|
| 3 | rngdi.t | |- .x. = ( .r ` R ) |
|
| 4 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 5 | 1 4 2 3 | isrng | |- ( R e. Rng <-> ( R e. Abel /\ ( mulGrp ` R ) e. Smgrp /\ A. a e. B A. b e. B A. c e. B ( ( a .x. ( b .+ c ) ) = ( ( a .x. b ) .+ ( a .x. c ) ) /\ ( ( a .+ b ) .x. c ) = ( ( a .x. c ) .+ ( b .x. c ) ) ) ) ) |
| 6 | oveq1 | |- ( a = X -> ( a .x. ( b .+ c ) ) = ( X .x. ( b .+ c ) ) ) |
|
| 7 | oveq1 | |- ( a = X -> ( a .x. b ) = ( X .x. b ) ) |
|
| 8 | oveq1 | |- ( a = X -> ( a .x. c ) = ( X .x. c ) ) |
|
| 9 | 7 8 | oveq12d | |- ( a = X -> ( ( a .x. b ) .+ ( a .x. c ) ) = ( ( X .x. b ) .+ ( X .x. c ) ) ) |
| 10 | 6 9 | eqeq12d | |- ( a = X -> ( ( a .x. ( b .+ c ) ) = ( ( a .x. b ) .+ ( a .x. c ) ) <-> ( X .x. ( b .+ c ) ) = ( ( X .x. b ) .+ ( X .x. c ) ) ) ) |
| 11 | oveq1 | |- ( a = X -> ( a .+ b ) = ( X .+ b ) ) |
|
| 12 | 11 | oveq1d | |- ( a = X -> ( ( a .+ b ) .x. c ) = ( ( X .+ b ) .x. c ) ) |
| 13 | 8 | oveq1d | |- ( a = X -> ( ( a .x. c ) .+ ( b .x. c ) ) = ( ( X .x. c ) .+ ( b .x. c ) ) ) |
| 14 | 12 13 | eqeq12d | |- ( a = X -> ( ( ( a .+ b ) .x. c ) = ( ( a .x. c ) .+ ( b .x. c ) ) <-> ( ( X .+ b ) .x. c ) = ( ( X .x. c ) .+ ( b .x. c ) ) ) ) |
| 15 | 10 14 | anbi12d | |- ( a = X -> ( ( ( a .x. ( b .+ c ) ) = ( ( a .x. b ) .+ ( a .x. c ) ) /\ ( ( a .+ b ) .x. c ) = ( ( a .x. c ) .+ ( b .x. c ) ) ) <-> ( ( X .x. ( b .+ c ) ) = ( ( X .x. b ) .+ ( X .x. c ) ) /\ ( ( X .+ b ) .x. c ) = ( ( X .x. c ) .+ ( b .x. c ) ) ) ) ) |
| 16 | oveq1 | |- ( b = Y -> ( b .+ c ) = ( Y .+ c ) ) |
|
| 17 | 16 | oveq2d | |- ( b = Y -> ( X .x. ( b .+ c ) ) = ( X .x. ( Y .+ c ) ) ) |
| 18 | oveq2 | |- ( b = Y -> ( X .x. b ) = ( X .x. Y ) ) |
|
| 19 | 18 | oveq1d | |- ( b = Y -> ( ( X .x. b ) .+ ( X .x. c ) ) = ( ( X .x. Y ) .+ ( X .x. c ) ) ) |
| 20 | 17 19 | eqeq12d | |- ( b = Y -> ( ( X .x. ( b .+ c ) ) = ( ( X .x. b ) .+ ( X .x. c ) ) <-> ( X .x. ( Y .+ c ) ) = ( ( X .x. Y ) .+ ( X .x. c ) ) ) ) |
| 21 | oveq2 | |- ( b = Y -> ( X .+ b ) = ( X .+ Y ) ) |
|
| 22 | 21 | oveq1d | |- ( b = Y -> ( ( X .+ b ) .x. c ) = ( ( X .+ Y ) .x. c ) ) |
| 23 | oveq1 | |- ( b = Y -> ( b .x. c ) = ( Y .x. c ) ) |
|
| 24 | 23 | oveq2d | |- ( b = Y -> ( ( X .x. c ) .+ ( b .x. c ) ) = ( ( X .x. c ) .+ ( Y .x. c ) ) ) |
| 25 | 22 24 | eqeq12d | |- ( b = Y -> ( ( ( X .+ b ) .x. c ) = ( ( X .x. c ) .+ ( b .x. c ) ) <-> ( ( X .+ Y ) .x. c ) = ( ( X .x. c ) .+ ( Y .x. c ) ) ) ) |
| 26 | 20 25 | anbi12d | |- ( b = Y -> ( ( ( X .x. ( b .+ c ) ) = ( ( X .x. b ) .+ ( X .x. c ) ) /\ ( ( X .+ b ) .x. c ) = ( ( X .x. c ) .+ ( b .x. c ) ) ) <-> ( ( X .x. ( Y .+ c ) ) = ( ( X .x. Y ) .+ ( X .x. c ) ) /\ ( ( X .+ Y ) .x. c ) = ( ( X .x. c ) .+ ( Y .x. c ) ) ) ) ) |
| 27 | oveq2 | |- ( c = Z -> ( Y .+ c ) = ( Y .+ Z ) ) |
|
| 28 | 27 | oveq2d | |- ( c = Z -> ( X .x. ( Y .+ c ) ) = ( X .x. ( Y .+ Z ) ) ) |
| 29 | oveq2 | |- ( c = Z -> ( X .x. c ) = ( X .x. Z ) ) |
|
| 30 | 29 | oveq2d | |- ( c = Z -> ( ( X .x. Y ) .+ ( X .x. c ) ) = ( ( X .x. Y ) .+ ( X .x. Z ) ) ) |
| 31 | 28 30 | eqeq12d | |- ( c = Z -> ( ( X .x. ( Y .+ c ) ) = ( ( X .x. Y ) .+ ( X .x. c ) ) <-> ( X .x. ( Y .+ Z ) ) = ( ( X .x. Y ) .+ ( X .x. Z ) ) ) ) |
| 32 | oveq2 | |- ( c = Z -> ( ( X .+ Y ) .x. c ) = ( ( X .+ Y ) .x. Z ) ) |
|
| 33 | oveq2 | |- ( c = Z -> ( Y .x. c ) = ( Y .x. Z ) ) |
|
| 34 | 29 33 | oveq12d | |- ( c = Z -> ( ( X .x. c ) .+ ( Y .x. c ) ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) ) |
| 35 | 32 34 | eqeq12d | |- ( c = Z -> ( ( ( X .+ Y ) .x. c ) = ( ( X .x. c ) .+ ( Y .x. c ) ) <-> ( ( X .+ Y ) .x. Z ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) ) ) |
| 36 | 31 35 | anbi12d | |- ( c = Z -> ( ( ( X .x. ( Y .+ c ) ) = ( ( X .x. Y ) .+ ( X .x. c ) ) /\ ( ( X .+ Y ) .x. c ) = ( ( X .x. c ) .+ ( Y .x. c ) ) ) <-> ( ( X .x. ( Y .+ Z ) ) = ( ( X .x. Y ) .+ ( X .x. Z ) ) /\ ( ( X .+ Y ) .x. Z ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) ) ) ) |
| 37 | 15 26 36 | rspc3v | |- ( ( X e. B /\ Y e. B /\ Z e. B ) -> ( A. a e. B A. b e. B A. c e. B ( ( a .x. ( b .+ c ) ) = ( ( a .x. b ) .+ ( a .x. c ) ) /\ ( ( a .+ b ) .x. c ) = ( ( a .x. c ) .+ ( b .x. c ) ) ) -> ( ( X .x. ( Y .+ Z ) ) = ( ( X .x. Y ) .+ ( X .x. Z ) ) /\ ( ( X .+ Y ) .x. Z ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) ) ) ) |
| 38 | simpl | |- ( ( ( X .x. ( Y .+ Z ) ) = ( ( X .x. Y ) .+ ( X .x. Z ) ) /\ ( ( X .+ Y ) .x. Z ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) ) -> ( X .x. ( Y .+ Z ) ) = ( ( X .x. Y ) .+ ( X .x. Z ) ) ) |
|
| 39 | 37 38 | syl6com | |- ( A. a e. B A. b e. B A. c e. B ( ( a .x. ( b .+ c ) ) = ( ( a .x. b ) .+ ( a .x. c ) ) /\ ( ( a .+ b ) .x. c ) = ( ( a .x. c ) .+ ( b .x. c ) ) ) -> ( ( X e. B /\ Y e. B /\ Z e. B ) -> ( X .x. ( Y .+ Z ) ) = ( ( X .x. Y ) .+ ( X .x. Z ) ) ) ) |
| 40 | 39 | 3ad2ant3 | |- ( ( R e. Abel /\ ( mulGrp ` R ) e. Smgrp /\ A. a e. B A. b e. B A. c e. B ( ( a .x. ( b .+ c ) ) = ( ( a .x. b ) .+ ( a .x. c ) ) /\ ( ( a .+ b ) .x. c ) = ( ( a .x. c ) .+ ( b .x. c ) ) ) ) -> ( ( X e. B /\ Y e. B /\ Z e. B ) -> ( X .x. ( Y .+ Z ) ) = ( ( X .x. Y ) .+ ( X .x. Z ) ) ) ) |
| 41 | 5 40 | sylbi | |- ( R e. Rng -> ( ( X e. B /\ Y e. B /\ Z e. B ) -> ( X .x. ( Y .+ Z ) ) = ( ( X .x. Y ) .+ ( X .x. Z ) ) ) ) |
| 42 | 41 | imp | |- ( ( R e. Rng /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .x. ( Y .+ Z ) ) = ( ( X .x. Y ) .+ ( X .x. Z ) ) ) |