This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image structure of an abelian group is an abelian group ( imasgrp analog). (Contributed by AV, 22-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasabl.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasabl.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasabl.p | |- ( ph -> .+ = ( +g ` R ) ) |
||
| imasabl.f | |- ( ph -> F : V -onto-> B ) |
||
| imasabl.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
||
| imasabl.r | |- ( ph -> R e. Abel ) |
||
| imasabl.z | |- .0. = ( 0g ` R ) |
||
| Assertion | imasabl | |- ( ph -> ( U e. Abel /\ ( F ` .0. ) = ( 0g ` U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasabl.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasabl.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasabl.p | |- ( ph -> .+ = ( +g ` R ) ) |
|
| 4 | imasabl.f | |- ( ph -> F : V -onto-> B ) |
|
| 5 | imasabl.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
|
| 6 | imasabl.r | |- ( ph -> R e. Abel ) |
|
| 7 | imasabl.z | |- .0. = ( 0g ` R ) |
|
| 8 | 6 | ablgrpd | |- ( ph -> R e. Grp ) |
| 9 | 1 2 3 4 5 8 7 | imasgrp | |- ( ph -> ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) |
| 10 | 1 2 4 6 | imasbas | |- ( ph -> B = ( Base ` U ) ) |
| 11 | 10 | eqcomd | |- ( ph -> ( Base ` U ) = B ) |
| 12 | 11 | eleq2d | |- ( ph -> ( x e. ( Base ` U ) <-> x e. B ) ) |
| 13 | 11 | eleq2d | |- ( ph -> ( y e. ( Base ` U ) <-> y e. B ) ) |
| 14 | 12 13 | anbi12d | |- ( ph -> ( ( x e. ( Base ` U ) /\ y e. ( Base ` U ) ) <-> ( x e. B /\ y e. B ) ) ) |
| 15 | 14 | adantr | |- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( ( x e. ( Base ` U ) /\ y e. ( Base ` U ) ) <-> ( x e. B /\ y e. B ) ) ) |
| 16 | foelcdmi | |- ( ( F : V -onto-> B /\ x e. B ) -> E. a e. V ( F ` a ) = x ) |
|
| 17 | 16 | ex | |- ( F : V -onto-> B -> ( x e. B -> E. a e. V ( F ` a ) = x ) ) |
| 18 | foelcdmi | |- ( ( F : V -onto-> B /\ y e. B ) -> E. b e. V ( F ` b ) = y ) |
|
| 19 | 18 | ex | |- ( F : V -onto-> B -> ( y e. B -> E. b e. V ( F ` b ) = y ) ) |
| 20 | 17 19 | anim12d | |- ( F : V -onto-> B -> ( ( x e. B /\ y e. B ) -> ( E. a e. V ( F ` a ) = x /\ E. b e. V ( F ` b ) = y ) ) ) |
| 21 | 4 20 | syl | |- ( ph -> ( ( x e. B /\ y e. B ) -> ( E. a e. V ( F ` a ) = x /\ E. b e. V ( F ` b ) = y ) ) ) |
| 22 | 21 | adantr | |- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( ( x e. B /\ y e. B ) -> ( E. a e. V ( F ` a ) = x /\ E. b e. V ( F ` b ) = y ) ) ) |
| 23 | 6 | ad3antrrr | |- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> R e. Abel ) |
| 24 | 2 | eleq2d | |- ( ph -> ( a e. V <-> a e. ( Base ` R ) ) ) |
| 25 | 24 | biimpd | |- ( ph -> ( a e. V -> a e. ( Base ` R ) ) ) |
| 26 | 25 | adantr | |- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( a e. V -> a e. ( Base ` R ) ) ) |
| 27 | 26 | imp | |- ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) -> a e. ( Base ` R ) ) |
| 28 | 27 | adantr | |- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> a e. ( Base ` R ) ) |
| 29 | 2 | eleq2d | |- ( ph -> ( b e. V <-> b e. ( Base ` R ) ) ) |
| 30 | 29 | biimpd | |- ( ph -> ( b e. V -> b e. ( Base ` R ) ) ) |
| 31 | 30 | adantr | |- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( b e. V -> b e. ( Base ` R ) ) ) |
| 32 | 31 | adantr | |- ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) -> ( b e. V -> b e. ( Base ` R ) ) ) |
| 33 | 32 | imp | |- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> b e. ( Base ` R ) ) |
| 34 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 35 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 36 | 34 35 | ablcom | |- ( ( R e. Abel /\ a e. ( Base ` R ) /\ b e. ( Base ` R ) ) -> ( a ( +g ` R ) b ) = ( b ( +g ` R ) a ) ) |
| 37 | 23 28 33 36 | syl3anc | |- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> ( a ( +g ` R ) b ) = ( b ( +g ` R ) a ) ) |
| 38 | 37 | fveq2d | |- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( b ( +g ` R ) a ) ) ) |
| 39 | simplll | |- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> ph ) |
|
| 40 | simpr | |- ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) -> a e. V ) |
|
| 41 | 40 | adantr | |- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> a e. V ) |
| 42 | simpr | |- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> b e. V ) |
|
| 43 | 3 | eqcomd | |- ( ph -> ( +g ` R ) = .+ ) |
| 44 | 43 | oveqd | |- ( ph -> ( a ( +g ` R ) b ) = ( a .+ b ) ) |
| 45 | 44 | fveq2d | |- ( ph -> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( a .+ b ) ) ) |
| 46 | 43 | oveqd | |- ( ph -> ( p ( +g ` R ) q ) = ( p .+ q ) ) |
| 47 | 46 | fveq2d | |- ( ph -> ( F ` ( p ( +g ` R ) q ) ) = ( F ` ( p .+ q ) ) ) |
| 48 | 45 47 | eqeq12d | |- ( ph -> ( ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) <-> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
| 49 | 48 | 3ad2ant1 | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) <-> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
| 50 | 5 49 | sylibrd | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) ) ) |
| 51 | eqid | |- ( +g ` U ) = ( +g ` U ) |
|
| 52 | 4 50 1 2 6 35 51 | imasaddval | |- ( ( ph /\ a e. V /\ b e. V ) -> ( ( F ` a ) ( +g ` U ) ( F ` b ) ) = ( F ` ( a ( +g ` R ) b ) ) ) |
| 53 | 39 41 42 52 | syl3anc | |- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> ( ( F ` a ) ( +g ` U ) ( F ` b ) ) = ( F ` ( a ( +g ` R ) b ) ) ) |
| 54 | 4 50 1 2 6 35 51 | imasaddval | |- ( ( ph /\ b e. V /\ a e. V ) -> ( ( F ` b ) ( +g ` U ) ( F ` a ) ) = ( F ` ( b ( +g ` R ) a ) ) ) |
| 55 | 39 42 41 54 | syl3anc | |- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> ( ( F ` b ) ( +g ` U ) ( F ` a ) ) = ( F ` ( b ( +g ` R ) a ) ) ) |
| 56 | 38 53 55 | 3eqtr4d | |- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> ( ( F ` a ) ( +g ` U ) ( F ` b ) ) = ( ( F ` b ) ( +g ` U ) ( F ` a ) ) ) |
| 57 | 56 | adantr | |- ( ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) /\ ( ( F ` b ) = y /\ ( F ` a ) = x ) ) -> ( ( F ` a ) ( +g ` U ) ( F ` b ) ) = ( ( F ` b ) ( +g ` U ) ( F ` a ) ) ) |
| 58 | oveq12 | |- ( ( ( F ` a ) = x /\ ( F ` b ) = y ) -> ( ( F ` a ) ( +g ` U ) ( F ` b ) ) = ( x ( +g ` U ) y ) ) |
|
| 59 | 58 | ancoms | |- ( ( ( F ` b ) = y /\ ( F ` a ) = x ) -> ( ( F ` a ) ( +g ` U ) ( F ` b ) ) = ( x ( +g ` U ) y ) ) |
| 60 | oveq12 | |- ( ( ( F ` b ) = y /\ ( F ` a ) = x ) -> ( ( F ` b ) ( +g ` U ) ( F ` a ) ) = ( y ( +g ` U ) x ) ) |
|
| 61 | 59 60 | eqeq12d | |- ( ( ( F ` b ) = y /\ ( F ` a ) = x ) -> ( ( ( F ` a ) ( +g ` U ) ( F ` b ) ) = ( ( F ` b ) ( +g ` U ) ( F ` a ) ) <-> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) |
| 62 | 61 | adantl | |- ( ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) /\ ( ( F ` b ) = y /\ ( F ` a ) = x ) ) -> ( ( ( F ` a ) ( +g ` U ) ( F ` b ) ) = ( ( F ` b ) ( +g ` U ) ( F ` a ) ) <-> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) |
| 63 | 57 62 | mpbid | |- ( ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) /\ ( ( F ` b ) = y /\ ( F ` a ) = x ) ) -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) |
| 64 | 63 | exp32 | |- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> ( ( F ` b ) = y -> ( ( F ` a ) = x -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) ) |
| 65 | 64 | rexlimdva | |- ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) -> ( E. b e. V ( F ` b ) = y -> ( ( F ` a ) = x -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) ) |
| 66 | 65 | com23 | |- ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) -> ( ( F ` a ) = x -> ( E. b e. V ( F ` b ) = y -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) ) |
| 67 | 66 | rexlimdva | |- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( E. a e. V ( F ` a ) = x -> ( E. b e. V ( F ` b ) = y -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) ) |
| 68 | 67 | impd | |- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( ( E. a e. V ( F ` a ) = x /\ E. b e. V ( F ` b ) = y ) -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) |
| 69 | 22 68 | syld | |- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( ( x e. B /\ y e. B ) -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) |
| 70 | 15 69 | sylbid | |- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( ( x e. ( Base ` U ) /\ y e. ( Base ` U ) ) -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) |
| 71 | 70 | imp | |- ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ ( x e. ( Base ` U ) /\ y e. ( Base ` U ) ) ) -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) |
| 72 | 71 | ralrimivva | |- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) |
| 73 | simpr | |- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) |
|
| 74 | 72 73 | jca | |- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) ) |
| 75 | 9 74 | mpdan | |- ( ph -> ( A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) ) |
| 76 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 77 | 76 51 | isabl2 | |- ( U e. Abel <-> ( U e. Grp /\ A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) |
| 78 | 77 | anbi1i | |- ( ( U e. Abel /\ ( F ` .0. ) = ( 0g ` U ) ) <-> ( ( U e. Grp /\ A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) /\ ( F ` .0. ) = ( 0g ` U ) ) ) |
| 79 | an21 | |- ( ( ( U e. Grp /\ A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) /\ ( F ` .0. ) = ( 0g ` U ) ) <-> ( A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) ) |
|
| 80 | 78 79 | bitri | |- ( ( U e. Abel /\ ( F ` .0. ) = ( 0g ` U ) ) <-> ( A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) ) |
| 81 | 75 80 | sylibr | |- ( ph -> ( U e. Abel /\ ( F ` .0. ) = ( 0g ` U ) ) ) |