This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007) (Revised by Thierry Arnoux, 17-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fovcld.1 | |- ( ph -> F : ( R X. S ) --> C ) |
|
| Assertion | fovcld | |- ( ( ph /\ A e. R /\ B e. S ) -> ( A F B ) e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fovcld.1 | |- ( ph -> F : ( R X. S ) --> C ) |
|
| 2 | 3simpc | |- ( ( ph /\ A e. R /\ B e. S ) -> ( A e. R /\ B e. S ) ) |
|
| 3 | ffnov | |- ( F : ( R X. S ) --> C <-> ( F Fn ( R X. S ) /\ A. x e. R A. y e. S ( x F y ) e. C ) ) |
|
| 4 | 3 | simprbi | |- ( F : ( R X. S ) --> C -> A. x e. R A. y e. S ( x F y ) e. C ) |
| 5 | 1 4 | syl | |- ( ph -> A. x e. R A. y e. S ( x F y ) e. C ) |
| 6 | 5 | 3ad2ant1 | |- ( ( ph /\ A e. R /\ B e. S ) -> A. x e. R A. y e. S ( x F y ) e. C ) |
| 7 | oveq1 | |- ( x = A -> ( x F y ) = ( A F y ) ) |
|
| 8 | 7 | eleq1d | |- ( x = A -> ( ( x F y ) e. C <-> ( A F y ) e. C ) ) |
| 9 | oveq2 | |- ( y = B -> ( A F y ) = ( A F B ) ) |
|
| 10 | 9 | eleq1d | |- ( y = B -> ( ( A F y ) e. C <-> ( A F B ) e. C ) ) |
| 11 | 8 10 | rspc2v | |- ( ( A e. R /\ B e. S ) -> ( A. x e. R A. y e. S ( x F y ) e. C -> ( A F B ) e. C ) ) |
| 12 | 2 6 11 | sylc | |- ( ( ph /\ A e. R /\ B e. S ) -> ( A F B ) e. C ) |