This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a non-unital ring under an injection is a non-unital ring ( imasmndf1 analog). (Contributed by AV, 22-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasrngf1.u | |- U = ( F "s R ) |
|
| imasrngf1.v | |- V = ( Base ` R ) |
||
| Assertion | imasrngf1 | |- ( ( F : V -1-1-> B /\ R e. Rng ) -> U e. Rng ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasrngf1.u | |- U = ( F "s R ) |
|
| 2 | imasrngf1.v | |- V = ( Base ` R ) |
|
| 3 | 1 | a1i | |- ( ( F : V -1-1-> B /\ R e. Rng ) -> U = ( F "s R ) ) |
| 4 | 2 | a1i | |- ( ( F : V -1-1-> B /\ R e. Rng ) -> V = ( Base ` R ) ) |
| 5 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 6 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 7 | f1f1orn | |- ( F : V -1-1-> B -> F : V -1-1-onto-> ran F ) |
|
| 8 | 7 | adantr | |- ( ( F : V -1-1-> B /\ R e. Rng ) -> F : V -1-1-onto-> ran F ) |
| 9 | f1ofo | |- ( F : V -1-1-onto-> ran F -> F : V -onto-> ran F ) |
|
| 10 | 8 9 | syl | |- ( ( F : V -1-1-> B /\ R e. Rng ) -> F : V -onto-> ran F ) |
| 11 | 8 | f1ocpbl | |- ( ( ( F : V -1-1-> B /\ R e. Rng ) /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) ) ) |
| 12 | 8 | f1ocpbl | |- ( ( ( F : V -1-1-> B /\ R e. Rng ) /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( .r ` R ) b ) ) = ( F ` ( p ( .r ` R ) q ) ) ) ) |
| 13 | simpr | |- ( ( F : V -1-1-> B /\ R e. Rng ) -> R e. Rng ) |
|
| 14 | 3 4 5 6 10 11 12 13 | imasrng | |- ( ( F : V -1-1-> B /\ R e. Rng ) -> U e. Rng ) |