This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasring.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasring.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasring.p | |- .+ = ( +g ` R ) |
||
| imasring.t | |- .x. = ( .r ` R ) |
||
| imasring.o | |- .1. = ( 1r ` R ) |
||
| imasring.f | |- ( ph -> F : V -onto-> B ) |
||
| imasring.e1 | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
||
| imasring.e2 | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
||
| imasring.r | |- ( ph -> R e. Ring ) |
||
| Assertion | imasring | |- ( ph -> ( U e. Ring /\ ( F ` .1. ) = ( 1r ` U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasring.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasring.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasring.p | |- .+ = ( +g ` R ) |
|
| 4 | imasring.t | |- .x. = ( .r ` R ) |
|
| 5 | imasring.o | |- .1. = ( 1r ` R ) |
|
| 6 | imasring.f | |- ( ph -> F : V -onto-> B ) |
|
| 7 | imasring.e1 | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
|
| 8 | imasring.e2 | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
|
| 9 | imasring.r | |- ( ph -> R e. Ring ) |
|
| 10 | 1 2 6 9 | imasbas | |- ( ph -> B = ( Base ` U ) ) |
| 11 | eqidd | |- ( ph -> ( +g ` U ) = ( +g ` U ) ) |
|
| 12 | eqidd | |- ( ph -> ( .r ` U ) = ( .r ` U ) ) |
|
| 13 | 3 | a1i | |- ( ph -> .+ = ( +g ` R ) ) |
| 14 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 15 | 9 14 | syl | |- ( ph -> R e. Grp ) |
| 16 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 17 | 1 2 13 6 7 15 16 | imasgrp | |- ( ph -> ( U e. Grp /\ ( F ` ( 0g ` R ) ) = ( 0g ` U ) ) ) |
| 18 | 17 | simpld | |- ( ph -> U e. Grp ) |
| 19 | eqid | |- ( .r ` U ) = ( .r ` U ) |
|
| 20 | 9 | adantr | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> R e. Ring ) |
| 21 | simprl | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> u e. V ) |
|
| 22 | 2 | adantr | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> V = ( Base ` R ) ) |
| 23 | 21 22 | eleqtrd | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> u e. ( Base ` R ) ) |
| 24 | simprr | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> v e. V ) |
|
| 25 | 24 22 | eleqtrd | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> v e. ( Base ` R ) ) |
| 26 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 27 | 26 4 | ringcl | |- ( ( R e. Ring /\ u e. ( Base ` R ) /\ v e. ( Base ` R ) ) -> ( u .x. v ) e. ( Base ` R ) ) |
| 28 | 20 23 25 27 | syl3anc | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> ( u .x. v ) e. ( Base ` R ) ) |
| 29 | 28 22 | eleqtrrd | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> ( u .x. v ) e. V ) |
| 30 | 29 | caovclg | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .x. q ) e. V ) |
| 31 | 6 8 1 2 9 4 19 30 | imasmulf | |- ( ph -> ( .r ` U ) : ( B X. B ) --> B ) |
| 32 | fovcdm | |- ( ( ( .r ` U ) : ( B X. B ) --> B /\ u e. B /\ v e. B ) -> ( u ( .r ` U ) v ) e. B ) |
|
| 33 | 31 32 | syl3an1 | |- ( ( ph /\ u e. B /\ v e. B ) -> ( u ( .r ` U ) v ) e. B ) |
| 34 | forn | |- ( F : V -onto-> B -> ran F = B ) |
|
| 35 | 6 34 | syl | |- ( ph -> ran F = B ) |
| 36 | 35 | eleq2d | |- ( ph -> ( u e. ran F <-> u e. B ) ) |
| 37 | 35 | eleq2d | |- ( ph -> ( v e. ran F <-> v e. B ) ) |
| 38 | 35 | eleq2d | |- ( ph -> ( w e. ran F <-> w e. B ) ) |
| 39 | 36 37 38 | 3anbi123d | |- ( ph -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( u e. B /\ v e. B /\ w e. B ) ) ) |
| 40 | fofn | |- ( F : V -onto-> B -> F Fn V ) |
|
| 41 | 6 40 | syl | |- ( ph -> F Fn V ) |
| 42 | fvelrnb | |- ( F Fn V -> ( u e. ran F <-> E. x e. V ( F ` x ) = u ) ) |
|
| 43 | fvelrnb | |- ( F Fn V -> ( v e. ran F <-> E. y e. V ( F ` y ) = v ) ) |
|
| 44 | fvelrnb | |- ( F Fn V -> ( w e. ran F <-> E. z e. V ( F ` z ) = w ) ) |
|
| 45 | 42 43 44 | 3anbi123d | |- ( F Fn V -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 46 | 41 45 | syl | |- ( ph -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 47 | 39 46 | bitr3d | |- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 48 | 3reeanv | |- ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) |
|
| 49 | 47 48 | bitr4di | |- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) <-> E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) ) ) |
| 50 | 9 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> R e. Ring ) |
| 51 | simp2 | |- ( ( ph /\ x e. V /\ y e. V ) -> x e. V ) |
|
| 52 | 2 | 3ad2ant1 | |- ( ( ph /\ x e. V /\ y e. V ) -> V = ( Base ` R ) ) |
| 53 | 51 52 | eleqtrd | |- ( ( ph /\ x e. V /\ y e. V ) -> x e. ( Base ` R ) ) |
| 54 | 53 | 3adant3r3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x e. ( Base ` R ) ) |
| 55 | simp3 | |- ( ( ph /\ x e. V /\ y e. V ) -> y e. V ) |
|
| 56 | 55 52 | eleqtrd | |- ( ( ph /\ x e. V /\ y e. V ) -> y e. ( Base ` R ) ) |
| 57 | 56 | 3adant3r3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> y e. ( Base ` R ) ) |
| 58 | simpr3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. V ) |
|
| 59 | 2 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> V = ( Base ` R ) ) |
| 60 | 58 59 | eleqtrd | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. ( Base ` R ) ) |
| 61 | 26 4 | ringass | |- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
| 62 | 50 54 57 60 61 | syl13anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
| 63 | 62 | fveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .x. y ) .x. z ) ) = ( F ` ( x .x. ( y .x. z ) ) ) ) |
| 64 | simpl | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ph ) |
|
| 65 | 29 | caovclg | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .x. y ) e. V ) |
| 66 | 65 | 3adantr3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .x. y ) e. V ) |
| 67 | 6 8 1 2 9 4 19 | imasmulval | |- ( ( ph /\ ( x .x. y ) e. V /\ z e. V ) -> ( ( F ` ( x .x. y ) ) ( .r ` U ) ( F ` z ) ) = ( F ` ( ( x .x. y ) .x. z ) ) ) |
| 68 | 64 66 58 67 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .x. y ) ) ( .r ` U ) ( F ` z ) ) = ( F ` ( ( x .x. y ) .x. z ) ) ) |
| 69 | simpr1 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x e. V ) |
|
| 70 | 29 | caovclg | |- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( y .x. z ) e. V ) |
| 71 | 70 | 3adantr1 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( y .x. z ) e. V ) |
| 72 | 6 8 1 2 9 4 19 | imasmulval | |- ( ( ph /\ x e. V /\ ( y .x. z ) e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .x. z ) ) ) = ( F ` ( x .x. ( y .x. z ) ) ) ) |
| 73 | 64 69 71 72 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .x. z ) ) ) = ( F ` ( x .x. ( y .x. z ) ) ) ) |
| 74 | 63 68 73 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .x. y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` x ) ( .r ` U ) ( F ` ( y .x. z ) ) ) ) |
| 75 | 6 8 1 2 9 4 19 | imasmulval | |- ( ( ph /\ x e. V /\ y e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` y ) ) = ( F ` ( x .x. y ) ) ) |
| 76 | 75 | 3adant3r3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` y ) ) = ( F ` ( x .x. y ) ) ) |
| 77 | 76 | oveq1d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` ( x .x. y ) ) ( .r ` U ) ( F ` z ) ) ) |
| 78 | 6 8 1 2 9 4 19 | imasmulval | |- ( ( ph /\ y e. V /\ z e. V ) -> ( ( F ` y ) ( .r ` U ) ( F ` z ) ) = ( F ` ( y .x. z ) ) ) |
| 79 | 78 | 3adant3r1 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` y ) ( .r ` U ) ( F ` z ) ) = ( F ` ( y .x. z ) ) ) |
| 80 | 79 | oveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) = ( ( F ` x ) ( .r ` U ) ( F ` ( y .x. z ) ) ) ) |
| 81 | 74 77 80 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) ) |
| 82 | simp1 | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` x ) = u ) |
|
| 83 | simp2 | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` y ) = v ) |
|
| 84 | 82 83 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( .r ` U ) ( F ` y ) ) = ( u ( .r ` U ) v ) ) |
| 85 | simp3 | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` z ) = w ) |
|
| 86 | 84 85 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( u ( .r ` U ) v ) ( .r ` U ) w ) ) |
| 87 | 83 85 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` y ) ( .r ` U ) ( F ` z ) ) = ( v ( .r ` U ) w ) ) |
| 88 | 82 87 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) |
| 89 | 86 88 | eqeq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) <-> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 90 | 81 89 | syl5ibcom | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 91 | 90 | 3exp2 | |- ( ph -> ( x e. V -> ( y e. V -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) ) ) ) |
| 92 | 91 | imp32 | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) ) |
| 93 | 92 | rexlimdv | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 94 | 93 | rexlimdvva | |- ( ph -> ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 95 | 49 94 | sylbid | |- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 96 | 95 | imp | |- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) |
| 97 | 26 3 4 | ringdi | |- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
| 98 | 50 54 57 60 97 | syl13anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
| 99 | 98 | fveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( x .x. ( y .+ z ) ) ) = ( F ` ( ( x .x. y ) .+ ( x .x. z ) ) ) ) |
| 100 | 26 3 | ringacl | |- ( ( R e. Ring /\ u e. ( Base ` R ) /\ v e. ( Base ` R ) ) -> ( u .+ v ) e. ( Base ` R ) ) |
| 101 | 20 23 25 100 | syl3anc | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> ( u .+ v ) e. ( Base ` R ) ) |
| 102 | 101 22 | eleqtrrd | |- ( ( ph /\ ( u e. V /\ v e. V ) ) -> ( u .+ v ) e. V ) |
| 103 | 102 | caovclg | |- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( y .+ z ) e. V ) |
| 104 | 103 | 3adantr1 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( y .+ z ) e. V ) |
| 105 | 6 8 1 2 9 4 19 | imasmulval | |- ( ( ph /\ x e. V /\ ( y .+ z ) e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .+ z ) ) ) = ( F ` ( x .x. ( y .+ z ) ) ) ) |
| 106 | 64 69 104 105 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .+ z ) ) ) = ( F ` ( x .x. ( y .+ z ) ) ) ) |
| 107 | 29 | caovclg | |- ( ( ph /\ ( x e. V /\ z e. V ) ) -> ( x .x. z ) e. V ) |
| 108 | 107 | 3adantr2 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .x. z ) e. V ) |
| 109 | eqid | |- ( +g ` U ) = ( +g ` U ) |
|
| 110 | 6 7 1 2 9 3 109 | imasaddval | |- ( ( ph /\ ( x .x. y ) e. V /\ ( x .x. z ) e. V ) -> ( ( F ` ( x .x. y ) ) ( +g ` U ) ( F ` ( x .x. z ) ) ) = ( F ` ( ( x .x. y ) .+ ( x .x. z ) ) ) ) |
| 111 | 64 66 108 110 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .x. y ) ) ( +g ` U ) ( F ` ( x .x. z ) ) ) = ( F ` ( ( x .x. y ) .+ ( x .x. z ) ) ) ) |
| 112 | 99 106 111 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .+ z ) ) ) = ( ( F ` ( x .x. y ) ) ( +g ` U ) ( F ` ( x .x. z ) ) ) ) |
| 113 | 6 7 1 2 9 3 109 | imasaddval | |- ( ( ph /\ y e. V /\ z e. V ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) |
| 114 | 113 | 3adant3r1 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) |
| 115 | 114 | oveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( ( F ` x ) ( .r ` U ) ( F ` ( y .+ z ) ) ) ) |
| 116 | 6 8 1 2 9 4 19 | imasmulval | |- ( ( ph /\ x e. V /\ z e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` z ) ) = ( F ` ( x .x. z ) ) ) |
| 117 | 116 | 3adant3r2 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` z ) ) = ( F ` ( x .x. z ) ) ) |
| 118 | 76 117 | oveq12d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( +g ` U ) ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ) = ( ( F ` ( x .x. y ) ) ( +g ` U ) ( F ` ( x .x. z ) ) ) ) |
| 119 | 112 115 118 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( +g ` U ) ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ) ) |
| 120 | 83 85 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( v ( +g ` U ) w ) ) |
| 121 | 82 120 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( u ( .r ` U ) ( v ( +g ` U ) w ) ) ) |
| 122 | 82 85 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( .r ` U ) ( F ` z ) ) = ( u ( .r ` U ) w ) ) |
| 123 | 84 122 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( +g ` U ) ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) |
| 124 | 121 123 | eqeq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( +g ` U ) ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ) <-> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
| 125 | 119 124 | syl5ibcom | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
| 126 | 125 | 3exp2 | |- ( ph -> ( x e. V -> ( y e. V -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) ) ) ) |
| 127 | 126 | imp32 | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) ) |
| 128 | 127 | rexlimdv | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
| 129 | 128 | rexlimdvva | |- ( ph -> ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
| 130 | 49 129 | sylbid | |- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
| 131 | 130 | imp | |- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) |
| 132 | 26 3 4 | ringdir | |- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
| 133 | 50 54 57 60 132 | syl13anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
| 134 | 133 | fveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) .x. z ) ) = ( F ` ( ( x .x. z ) .+ ( y .x. z ) ) ) ) |
| 135 | 102 | caovclg | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .+ y ) e. V ) |
| 136 | 135 | 3adantr3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ y ) e. V ) |
| 137 | 6 8 1 2 9 4 19 | imasmulval | |- ( ( ph /\ ( x .+ y ) e. V /\ z e. V ) -> ( ( F ` ( x .+ y ) ) ( .r ` U ) ( F ` z ) ) = ( F ` ( ( x .+ y ) .x. z ) ) ) |
| 138 | 64 136 58 137 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .+ y ) ) ( .r ` U ) ( F ` z ) ) = ( F ` ( ( x .+ y ) .x. z ) ) ) |
| 139 | 6 7 1 2 9 3 109 | imasaddval | |- ( ( ph /\ ( x .x. z ) e. V /\ ( y .x. z ) e. V ) -> ( ( F ` ( x .x. z ) ) ( +g ` U ) ( F ` ( y .x. z ) ) ) = ( F ` ( ( x .x. z ) .+ ( y .x. z ) ) ) ) |
| 140 | 64 108 71 139 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .x. z ) ) ( +g ` U ) ( F ` ( y .x. z ) ) ) = ( F ` ( ( x .x. z ) .+ ( y .x. z ) ) ) ) |
| 141 | 134 138 140 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .+ y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` ( x .x. z ) ) ( +g ` U ) ( F ` ( y .x. z ) ) ) ) |
| 142 | 6 7 1 2 9 3 109 | imasaddval | |- ( ( ph /\ x e. V /\ y e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) |
| 143 | 142 | 3adant3r3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) |
| 144 | 143 | oveq1d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` ( x .+ y ) ) ( .r ` U ) ( F ` z ) ) ) |
| 145 | 117 79 | oveq12d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ( +g ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) = ( ( F ` ( x .x. z ) ) ( +g ` U ) ( F ` ( y .x. z ) ) ) ) |
| 146 | 141 144 145 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ( +g ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) ) |
| 147 | 82 83 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( u ( +g ` U ) v ) ) |
| 148 | 147 85 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( u ( +g ` U ) v ) ( .r ` U ) w ) ) |
| 149 | 122 87 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ( +g ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) |
| 150 | 148 149 | eqeq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ( +g ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) <-> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 151 | 146 150 | syl5ibcom | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 152 | 151 | 3exp2 | |- ( ph -> ( x e. V -> ( y e. V -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) ) ) ) |
| 153 | 152 | imp32 | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) ) |
| 154 | 153 | rexlimdv | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 155 | 154 | rexlimdvva | |- ( ph -> ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 156 | 49 155 | sylbid | |- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 157 | 156 | imp | |- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) |
| 158 | fof | |- ( F : V -onto-> B -> F : V --> B ) |
|
| 159 | 6 158 | syl | |- ( ph -> F : V --> B ) |
| 160 | 26 5 | ringidcl | |- ( R e. Ring -> .1. e. ( Base ` R ) ) |
| 161 | 9 160 | syl | |- ( ph -> .1. e. ( Base ` R ) ) |
| 162 | 161 2 | eleqtrrd | |- ( ph -> .1. e. V ) |
| 163 | 159 162 | ffvelcdmd | |- ( ph -> ( F ` .1. ) e. B ) |
| 164 | 41 42 | syl | |- ( ph -> ( u e. ran F <-> E. x e. V ( F ` x ) = u ) ) |
| 165 | 36 164 | bitr3d | |- ( ph -> ( u e. B <-> E. x e. V ( F ` x ) = u ) ) |
| 166 | simpl | |- ( ( ph /\ x e. V ) -> ph ) |
|
| 167 | 162 | adantr | |- ( ( ph /\ x e. V ) -> .1. e. V ) |
| 168 | simpr | |- ( ( ph /\ x e. V ) -> x e. V ) |
|
| 169 | 6 8 1 2 9 4 19 | imasmulval | |- ( ( ph /\ .1. e. V /\ x e. V ) -> ( ( F ` .1. ) ( .r ` U ) ( F ` x ) ) = ( F ` ( .1. .x. x ) ) ) |
| 170 | 166 167 168 169 | syl3anc | |- ( ( ph /\ x e. V ) -> ( ( F ` .1. ) ( .r ` U ) ( F ` x ) ) = ( F ` ( .1. .x. x ) ) ) |
| 171 | 2 | eleq2d | |- ( ph -> ( x e. V <-> x e. ( Base ` R ) ) ) |
| 172 | 171 | biimpa | |- ( ( ph /\ x e. V ) -> x e. ( Base ` R ) ) |
| 173 | 26 4 5 | ringlidm | |- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( .1. .x. x ) = x ) |
| 174 | 9 172 173 | syl2an2r | |- ( ( ph /\ x e. V ) -> ( .1. .x. x ) = x ) |
| 175 | 174 | fveq2d | |- ( ( ph /\ x e. V ) -> ( F ` ( .1. .x. x ) ) = ( F ` x ) ) |
| 176 | 170 175 | eqtrd | |- ( ( ph /\ x e. V ) -> ( ( F ` .1. ) ( .r ` U ) ( F ` x ) ) = ( F ` x ) ) |
| 177 | oveq2 | |- ( ( F ` x ) = u -> ( ( F ` .1. ) ( .r ` U ) ( F ` x ) ) = ( ( F ` .1. ) ( .r ` U ) u ) ) |
|
| 178 | id | |- ( ( F ` x ) = u -> ( F ` x ) = u ) |
|
| 179 | 177 178 | eqeq12d | |- ( ( F ` x ) = u -> ( ( ( F ` .1. ) ( .r ` U ) ( F ` x ) ) = ( F ` x ) <-> ( ( F ` .1. ) ( .r ` U ) u ) = u ) ) |
| 180 | 176 179 | syl5ibcom | |- ( ( ph /\ x e. V ) -> ( ( F ` x ) = u -> ( ( F ` .1. ) ( .r ` U ) u ) = u ) ) |
| 181 | 180 | rexlimdva | |- ( ph -> ( E. x e. V ( F ` x ) = u -> ( ( F ` .1. ) ( .r ` U ) u ) = u ) ) |
| 182 | 165 181 | sylbid | |- ( ph -> ( u e. B -> ( ( F ` .1. ) ( .r ` U ) u ) = u ) ) |
| 183 | 182 | imp | |- ( ( ph /\ u e. B ) -> ( ( F ` .1. ) ( .r ` U ) u ) = u ) |
| 184 | 6 8 1 2 9 4 19 | imasmulval | |- ( ( ph /\ x e. V /\ .1. e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` .1. ) ) = ( F ` ( x .x. .1. ) ) ) |
| 185 | 167 184 | mpd3an3 | |- ( ( ph /\ x e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` .1. ) ) = ( F ` ( x .x. .1. ) ) ) |
| 186 | 26 4 5 | ringridm | |- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( x .x. .1. ) = x ) |
| 187 | 9 172 186 | syl2an2r | |- ( ( ph /\ x e. V ) -> ( x .x. .1. ) = x ) |
| 188 | 187 | fveq2d | |- ( ( ph /\ x e. V ) -> ( F ` ( x .x. .1. ) ) = ( F ` x ) ) |
| 189 | 185 188 | eqtrd | |- ( ( ph /\ x e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` .1. ) ) = ( F ` x ) ) |
| 190 | oveq1 | |- ( ( F ` x ) = u -> ( ( F ` x ) ( .r ` U ) ( F ` .1. ) ) = ( u ( .r ` U ) ( F ` .1. ) ) ) |
|
| 191 | 190 178 | eqeq12d | |- ( ( F ` x ) = u -> ( ( ( F ` x ) ( .r ` U ) ( F ` .1. ) ) = ( F ` x ) <-> ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) |
| 192 | 189 191 | syl5ibcom | |- ( ( ph /\ x e. V ) -> ( ( F ` x ) = u -> ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) |
| 193 | 192 | rexlimdva | |- ( ph -> ( E. x e. V ( F ` x ) = u -> ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) |
| 194 | 165 193 | sylbid | |- ( ph -> ( u e. B -> ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) |
| 195 | 194 | imp | |- ( ( ph /\ u e. B ) -> ( u ( .r ` U ) ( F ` .1. ) ) = u ) |
| 196 | 10 11 12 18 33 96 131 157 163 183 195 | isringd | |- ( ph -> U e. Ring ) |
| 197 | 163 10 | eleqtrd | |- ( ph -> ( F ` .1. ) e. ( Base ` U ) ) |
| 198 | 10 | eleq2d | |- ( ph -> ( u e. B <-> u e. ( Base ` U ) ) ) |
| 199 | 182 194 | jcad | |- ( ph -> ( u e. B -> ( ( ( F ` .1. ) ( .r ` U ) u ) = u /\ ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) ) |
| 200 | 198 199 | sylbird | |- ( ph -> ( u e. ( Base ` U ) -> ( ( ( F ` .1. ) ( .r ` U ) u ) = u /\ ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) ) |
| 201 | 200 | ralrimiv | |- ( ph -> A. u e. ( Base ` U ) ( ( ( F ` .1. ) ( .r ` U ) u ) = u /\ ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) |
| 202 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 203 | eqid | |- ( 1r ` U ) = ( 1r ` U ) |
|
| 204 | 202 19 203 | isringid | |- ( U e. Ring -> ( ( ( F ` .1. ) e. ( Base ` U ) /\ A. u e. ( Base ` U ) ( ( ( F ` .1. ) ( .r ` U ) u ) = u /\ ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) <-> ( 1r ` U ) = ( F ` .1. ) ) ) |
| 205 | 196 204 | syl | |- ( ph -> ( ( ( F ` .1. ) e. ( Base ` U ) /\ A. u e. ( Base ` U ) ( ( ( F ` .1. ) ( .r ` U ) u ) = u /\ ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) <-> ( 1r ` U ) = ( F ` .1. ) ) ) |
| 206 | 197 201 205 | mpbi2and | |- ( ph -> ( 1r ` U ) = ( F ` .1. ) ) |
| 207 | 206 | eqcomd | |- ( ph -> ( F ` .1. ) = ( 1r ` U ) ) |
| 208 | 196 207 | jca | |- ( ph -> ( U e. Ring /\ ( F ` .1. ) = ( 1r ` U ) ) ) |