This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The positive part of a simple function is simple. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | i1fpos.1 | |- G = ( x e. RR |-> if ( 0 <_ ( F ` x ) , ( F ` x ) , 0 ) ) |
|
| Assertion | i1fpos | |- ( F e. dom S.1 -> G e. dom S.1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fpos.1 | |- G = ( x e. RR |-> if ( 0 <_ ( F ` x ) , ( F ` x ) , 0 ) ) |
|
| 2 | simpr | |- ( ( F e. dom S.1 /\ x e. RR ) -> x e. RR ) |
|
| 3 | 2 | biantrurd | |- ( ( F e. dom S.1 /\ x e. RR ) -> ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( x e. RR /\ ( F ` x ) e. ( 0 [,) +oo ) ) ) ) |
| 4 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 5 | 4 | ffvelcdmda | |- ( ( F e. dom S.1 /\ x e. RR ) -> ( F ` x ) e. RR ) |
| 6 | 5 | biantrurd | |- ( ( F e. dom S.1 /\ x e. RR ) -> ( 0 <_ ( F ` x ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) ) |
| 7 | elrege0 | |- ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
|
| 8 | 6 7 | bitr4di | |- ( ( F e. dom S.1 /\ x e. RR ) -> ( 0 <_ ( F ` x ) <-> ( F ` x ) e. ( 0 [,) +oo ) ) ) |
| 9 | 4 | adantr | |- ( ( F e. dom S.1 /\ x e. RR ) -> F : RR --> RR ) |
| 10 | ffn | |- ( F : RR --> RR -> F Fn RR ) |
|
| 11 | elpreima | |- ( F Fn RR -> ( x e. ( `' F " ( 0 [,) +oo ) ) <-> ( x e. RR /\ ( F ` x ) e. ( 0 [,) +oo ) ) ) ) |
|
| 12 | 9 10 11 | 3syl | |- ( ( F e. dom S.1 /\ x e. RR ) -> ( x e. ( `' F " ( 0 [,) +oo ) ) <-> ( x e. RR /\ ( F ` x ) e. ( 0 [,) +oo ) ) ) ) |
| 13 | 3 8 12 | 3bitr4d | |- ( ( F e. dom S.1 /\ x e. RR ) -> ( 0 <_ ( F ` x ) <-> x e. ( `' F " ( 0 [,) +oo ) ) ) ) |
| 14 | 13 | ifbid | |- ( ( F e. dom S.1 /\ x e. RR ) -> if ( 0 <_ ( F ` x ) , ( F ` x ) , 0 ) = if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) |
| 15 | 14 | mpteq2dva | |- ( F e. dom S.1 -> ( x e. RR |-> if ( 0 <_ ( F ` x ) , ( F ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) ) |
| 16 | 1 15 | eqtrid | |- ( F e. dom S.1 -> G = ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) ) |
| 17 | i1fima | |- ( F e. dom S.1 -> ( `' F " ( 0 [,) +oo ) ) e. dom vol ) |
|
| 18 | eqid | |- ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) |
|
| 19 | 18 | i1fres | |- ( ( F e. dom S.1 /\ ( `' F " ( 0 [,) +oo ) ) e. dom vol ) -> ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) e. dom S.1 ) |
| 20 | 17 19 | mpdan | |- ( F e. dom S.1 -> ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) e. dom S.1 ) |
| 21 | 16 20 | eqeltrd | |- ( F e. dom S.1 -> G e. dom S.1 ) |