This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The convergence of a Cauchy sequence in a complete metric space. (Contributed by NM, 19-Dec-2006) (Revised by Mario Carneiro, 14-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cmetcau.1 | |- J = ( MetOpen ` D ) |
|
| Assertion | cmetcau | |- ( ( D e. ( CMet ` X ) /\ F e. ( Cau ` D ) ) -> F e. dom ( ~~>t ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmetcau.1 | |- J = ( MetOpen ` D ) |
|
| 2 | cmetmet | |- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
|
| 3 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 4 | 2 3 | syl | |- ( D e. ( CMet ` X ) -> D e. ( *Met ` X ) ) |
| 5 | caun0 | |- ( ( D e. ( *Met ` X ) /\ F e. ( Cau ` D ) ) -> X =/= (/) ) |
|
| 6 | 4 5 | sylan | |- ( ( D e. ( CMet ` X ) /\ F e. ( Cau ` D ) ) -> X =/= (/) ) |
| 7 | n0 | |- ( X =/= (/) <-> E. x x e. X ) |
|
| 8 | 6 7 | sylib | |- ( ( D e. ( CMet ` X ) /\ F e. ( Cau ` D ) ) -> E. x x e. X ) |
| 9 | simpll | |- ( ( ( D e. ( CMet ` X ) /\ F e. ( Cau ` D ) ) /\ x e. X ) -> D e. ( CMet ` X ) ) |
|
| 10 | simpr | |- ( ( ( D e. ( CMet ` X ) /\ F e. ( Cau ` D ) ) /\ x e. X ) -> x e. X ) |
|
| 11 | simplr | |- ( ( ( D e. ( CMet ` X ) /\ F e. ( Cau ` D ) ) /\ x e. X ) -> F e. ( Cau ` D ) ) |
|
| 12 | eqid | |- ( y e. NN |-> if ( y e. dom F , ( F ` y ) , x ) ) = ( y e. NN |-> if ( y e. dom F , ( F ` y ) , x ) ) |
|
| 13 | 1 9 10 11 12 | cmetcaulem | |- ( ( ( D e. ( CMet ` X ) /\ F e. ( Cau ` D ) ) /\ x e. X ) -> F e. dom ( ~~>t ` J ) ) |
| 14 | 8 13 | exlimddv | |- ( ( D e. ( CMet ` X ) /\ F e. ( Cau ` D ) ) -> F e. dom ( ~~>t ` J ) ) |