This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition to ensure a sequence of nested balls is Cauchy. (Contributed by Mario Carneiro, 18-Jan-2014) (Revised by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caubl.2 | |- ( ph -> D e. ( *Met ` X ) ) |
|
| caubl.3 | |- ( ph -> F : NN --> ( X X. RR+ ) ) |
||
| caubl.4 | |- ( ph -> A. n e. NN ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) |
||
| caubl.5 | |- ( ph -> A. r e. RR+ E. n e. NN ( 2nd ` ( F ` n ) ) < r ) |
||
| Assertion | caubl | |- ( ph -> ( 1st o. F ) e. ( Cau ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caubl.2 | |- ( ph -> D e. ( *Met ` X ) ) |
|
| 2 | caubl.3 | |- ( ph -> F : NN --> ( X X. RR+ ) ) |
|
| 3 | caubl.4 | |- ( ph -> A. n e. NN ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) |
|
| 4 | caubl.5 | |- ( ph -> A. r e. RR+ E. n e. NN ( 2nd ` ( F ` n ) ) < r ) |
|
| 5 | 2fveq3 | |- ( r = n -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` n ) ) ) |
|
| 6 | 5 | sseq1d | |- ( r = n -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) <-> ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
| 7 | 6 | imbi2d | |- ( r = n -> ( ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) <-> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) ) |
| 8 | 2fveq3 | |- ( r = k -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` k ) ) ) |
|
| 9 | 8 | sseq1d | |- ( r = k -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) <-> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
| 10 | 9 | imbi2d | |- ( r = k -> ( ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) <-> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) ) |
| 11 | 2fveq3 | |- ( r = ( k + 1 ) -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) ) |
|
| 12 | 11 | sseq1d | |- ( r = ( k + 1 ) -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) <-> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
| 13 | 12 | imbi2d | |- ( r = ( k + 1 ) -> ( ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) <-> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) ) |
| 14 | ssid | |- ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) |
|
| 15 | 14 | 2a1i | |- ( n e. ZZ -> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
| 16 | eluznn | |- ( ( n e. NN /\ k e. ( ZZ>= ` n ) ) -> k e. NN ) |
|
| 17 | fvoveq1 | |- ( n = k -> ( F ` ( n + 1 ) ) = ( F ` ( k + 1 ) ) ) |
|
| 18 | 17 | fveq2d | |- ( n = k -> ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) = ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) ) |
| 19 | 2fveq3 | |- ( n = k -> ( ( ball ` D ) ` ( F ` n ) ) = ( ( ball ` D ) ` ( F ` k ) ) ) |
|
| 20 | 18 19 | sseq12d | |- ( n = k -> ( ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) <-> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) ) |
| 21 | 20 | rspccva | |- ( ( A. n e. NN ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) /\ k e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) |
| 22 | 3 16 21 | syl2an | |- ( ( ph /\ ( n e. NN /\ k e. ( ZZ>= ` n ) ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) |
| 23 | 22 | anassrs | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) |
| 24 | sstr2 | |- ( ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
|
| 25 | 23 24 | syl | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
| 26 | 25 | expcom | |- ( k e. ( ZZ>= ` n ) -> ( ( ph /\ n e. NN ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) ) |
| 27 | 26 | a2d | |- ( k e. ( ZZ>= ` n ) -> ( ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) -> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) ) |
| 28 | 7 10 13 10 15 27 | uzind4 | |- ( k e. ( ZZ>= ` n ) -> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
| 29 | 28 | com12 | |- ( ( ph /\ n e. NN ) -> ( k e. ( ZZ>= ` n ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
| 30 | 29 | ad2ant2r | |- ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) -> ( k e. ( ZZ>= ` n ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
| 31 | relxp | |- Rel ( X X. RR+ ) |
|
| 32 | 2 | ad3antrrr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> F : NN --> ( X X. RR+ ) ) |
| 33 | simplrl | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> n e. NN ) |
|
| 34 | 32 33 | ffvelcdmd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` n ) e. ( X X. RR+ ) ) |
| 35 | 1st2nd | |- ( ( Rel ( X X. RR+ ) /\ ( F ` n ) e. ( X X. RR+ ) ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
|
| 36 | 31 34 35 | sylancr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 37 | 36 | fveq2d | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` n ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
| 38 | df-ov | |- ( ( 1st ` ( F ` n ) ) ( ball ` D ) ( 2nd ` ( F ` n ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
|
| 39 | 37 38 | eqtr4di | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` n ) ) = ( ( 1st ` ( F ` n ) ) ( ball ` D ) ( 2nd ` ( F ` n ) ) ) ) |
| 40 | 1 | ad3antrrr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> D e. ( *Met ` X ) ) |
| 41 | xp1st | |- ( ( F ` n ) e. ( X X. RR+ ) -> ( 1st ` ( F ` n ) ) e. X ) |
|
| 42 | 34 41 | syl | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 1st ` ( F ` n ) ) e. X ) |
| 43 | xp2nd | |- ( ( F ` n ) e. ( X X. RR+ ) -> ( 2nd ` ( F ` n ) ) e. RR+ ) |
|
| 44 | 34 43 | syl | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 2nd ` ( F ` n ) ) e. RR+ ) |
| 45 | 44 | rpxrd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 2nd ` ( F ` n ) ) e. RR* ) |
| 46 | simpllr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> r e. RR+ ) |
|
| 47 | 46 | rpxrd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> r e. RR* ) |
| 48 | simplrr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 2nd ` ( F ` n ) ) < r ) |
|
| 49 | rpre | |- ( ( 2nd ` ( F ` n ) ) e. RR+ -> ( 2nd ` ( F ` n ) ) e. RR ) |
|
| 50 | rpre | |- ( r e. RR+ -> r e. RR ) |
|
| 51 | ltle | |- ( ( ( 2nd ` ( F ` n ) ) e. RR /\ r e. RR ) -> ( ( 2nd ` ( F ` n ) ) < r -> ( 2nd ` ( F ` n ) ) <_ r ) ) |
|
| 52 | 49 50 51 | syl2an | |- ( ( ( 2nd ` ( F ` n ) ) e. RR+ /\ r e. RR+ ) -> ( ( 2nd ` ( F ` n ) ) < r -> ( 2nd ` ( F ` n ) ) <_ r ) ) |
| 53 | 44 46 52 | syl2anc | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( 2nd ` ( F ` n ) ) < r -> ( 2nd ` ( F ` n ) ) <_ r ) ) |
| 54 | 48 53 | mpd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 2nd ` ( F ` n ) ) <_ r ) |
| 55 | ssbl | |- ( ( ( D e. ( *Met ` X ) /\ ( 1st ` ( F ` n ) ) e. X ) /\ ( ( 2nd ` ( F ` n ) ) e. RR* /\ r e. RR* ) /\ ( 2nd ` ( F ` n ) ) <_ r ) -> ( ( 1st ` ( F ` n ) ) ( ball ` D ) ( 2nd ` ( F ` n ) ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) |
|
| 56 | 40 42 45 47 54 55 | syl221anc | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( 1st ` ( F ` n ) ) ( ball ` D ) ( 2nd ` ( F ` n ) ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) |
| 57 | 39 56 | eqsstrd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) |
| 58 | sstr2 | |- ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) ) |
|
| 59 | 57 58 | syl5com | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) ) |
| 60 | simprl | |- ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) -> n e. NN ) |
|
| 61 | 60 16 | sylan | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> k e. NN ) |
| 62 | 32 61 | ffvelcdmd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` k ) e. ( X X. RR+ ) ) |
| 63 | xp1st | |- ( ( F ` k ) e. ( X X. RR+ ) -> ( 1st ` ( F ` k ) ) e. X ) |
|
| 64 | 62 63 | syl | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 1st ` ( F ` k ) ) e. X ) |
| 65 | xp2nd | |- ( ( F ` k ) e. ( X X. RR+ ) -> ( 2nd ` ( F ` k ) ) e. RR+ ) |
|
| 66 | 62 65 | syl | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 2nd ` ( F ` k ) ) e. RR+ ) |
| 67 | blcntr | |- ( ( D e. ( *Met ` X ) /\ ( 1st ` ( F ` k ) ) e. X /\ ( 2nd ` ( F ` k ) ) e. RR+ ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) |
|
| 68 | 40 64 66 67 | syl3anc | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) |
| 69 | 1st2nd | |- ( ( Rel ( X X. RR+ ) /\ ( F ` k ) e. ( X X. RR+ ) ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
|
| 70 | 31 62 69 | sylancr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
| 71 | 70 | fveq2d | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` k ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) ) |
| 72 | df-ov | |- ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
|
| 73 | 71 72 | eqtr4di | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` k ) ) = ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) |
| 74 | 68 73 | eleqtrrd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 1st ` ( F ` k ) ) e. ( ( ball ` D ) ` ( F ` k ) ) ) |
| 75 | ssel | |- ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) -> ( ( 1st ` ( F ` k ) ) e. ( ( ball ` D ) ` ( F ` k ) ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) ) |
|
| 76 | 59 74 75 | syl6ci | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) ) |
| 77 | elbl2 | |- ( ( ( D e. ( *Met ` X ) /\ r e. RR* ) /\ ( ( 1st ` ( F ` n ) ) e. X /\ ( 1st ` ( F ` k ) ) e. X ) ) -> ( ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) <-> ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) |
|
| 78 | 40 47 42 64 77 | syl22anc | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) <-> ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) |
| 79 | 76 78 | sylibd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) |
| 80 | 79 | ex | |- ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) -> ( k e. ( ZZ>= ` n ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) ) |
| 81 | 30 80 | mpdd | |- ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) -> ( k e. ( ZZ>= ` n ) -> ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) |
| 82 | 81 | ralrimiv | |- ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) -> A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) |
| 83 | 82 | expr | |- ( ( ( ph /\ r e. RR+ ) /\ n e. NN ) -> ( ( 2nd ` ( F ` n ) ) < r -> A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) |
| 84 | 83 | reximdva | |- ( ( ph /\ r e. RR+ ) -> ( E. n e. NN ( 2nd ` ( F ` n ) ) < r -> E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) |
| 85 | 84 | ralimdva | |- ( ph -> ( A. r e. RR+ E. n e. NN ( 2nd ` ( F ` n ) ) < r -> A. r e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) |
| 86 | 4 85 | mpd | |- ( ph -> A. r e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) |
| 87 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 88 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 89 | fvco3 | |- ( ( F : NN --> ( X X. RR+ ) /\ k e. NN ) -> ( ( 1st o. F ) ` k ) = ( 1st ` ( F ` k ) ) ) |
|
| 90 | 2 89 | sylan | |- ( ( ph /\ k e. NN ) -> ( ( 1st o. F ) ` k ) = ( 1st ` ( F ` k ) ) ) |
| 91 | fvco3 | |- ( ( F : NN --> ( X X. RR+ ) /\ n e. NN ) -> ( ( 1st o. F ) ` n ) = ( 1st ` ( F ` n ) ) ) |
|
| 92 | 2 91 | sylan | |- ( ( ph /\ n e. NN ) -> ( ( 1st o. F ) ` n ) = ( 1st ` ( F ` n ) ) ) |
| 93 | 1stcof | |- ( F : NN --> ( X X. RR+ ) -> ( 1st o. F ) : NN --> X ) |
|
| 94 | 2 93 | syl | |- ( ph -> ( 1st o. F ) : NN --> X ) |
| 95 | 87 1 88 90 92 94 | iscauf | |- ( ph -> ( ( 1st o. F ) e. ( Cau ` D ) <-> A. r e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) |
| 96 | 86 95 | mpbird | |- ( ph -> ( 1st o. F ) e. ( Cau ` D ) ) |