This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power set of a set is equinumerous to set exponentiation with a base of ordinal 2o . (Contributed by FL, 22-Feb-2011) (Revised by Mario Carneiro, 1-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pw2eng | |- ( A e. V -> ~P A ~~ ( 2o ^m A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg | |- ( A e. V -> ~P A e. _V ) |
|
| 2 | ovexd | |- ( A e. V -> ( { (/) , { (/) } } ^m A ) e. _V ) |
|
| 3 | id | |- ( A e. V -> A e. V ) |
|
| 4 | 0ex | |- (/) e. _V |
|
| 5 | 4 | a1i | |- ( A e. V -> (/) e. _V ) |
| 6 | p0ex | |- { (/) } e. _V |
|
| 7 | 6 | a1i | |- ( A e. V -> { (/) } e. _V ) |
| 8 | 0nep0 | |- (/) =/= { (/) } |
|
| 9 | 8 | a1i | |- ( A e. V -> (/) =/= { (/) } ) |
| 10 | eqid | |- ( x e. ~P A |-> ( z e. A |-> if ( z e. x , { (/) } , (/) ) ) ) = ( x e. ~P A |-> ( z e. A |-> if ( z e. x , { (/) } , (/) ) ) ) |
|
| 11 | 3 5 7 9 10 | pw2f1o | |- ( A e. V -> ( x e. ~P A |-> ( z e. A |-> if ( z e. x , { (/) } , (/) ) ) ) : ~P A -1-1-onto-> ( { (/) , { (/) } } ^m A ) ) |
| 12 | f1oen2g | |- ( ( ~P A e. _V /\ ( { (/) , { (/) } } ^m A ) e. _V /\ ( x e. ~P A |-> ( z e. A |-> if ( z e. x , { (/) } , (/) ) ) ) : ~P A -1-1-onto-> ( { (/) , { (/) } } ^m A ) ) -> ~P A ~~ ( { (/) , { (/) } } ^m A ) ) |
|
| 13 | 1 2 11 12 | syl3anc | |- ( A e. V -> ~P A ~~ ( { (/) , { (/) } } ^m A ) ) |
| 14 | df2o2 | |- 2o = { (/) , { (/) } } |
|
| 15 | 14 | oveq1i | |- ( 2o ^m A ) = ( { (/) , { (/) } } ^m A ) |
| 16 | 13 15 | breqtrrdi | |- ( A e. V -> ~P A ~~ ( 2o ^m A ) ) |