This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Power rule for cardinal arithmetic. Theorem 11.21 of TakeutiZaring p. 106. (Contributed by Mario Carneiro, 9-Mar-2013) (Revised by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mappwen | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( A ^m B ) ~~ ~P B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> A ~<_ ~P B ) |
|
| 2 | pw2eng | |- ( B e. dom card -> ~P B ~~ ( 2o ^m B ) ) |
|
| 3 | 2 | ad2antrr | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ~P B ~~ ( 2o ^m B ) ) |
| 4 | domentr | |- ( ( A ~<_ ~P B /\ ~P B ~~ ( 2o ^m B ) ) -> A ~<_ ( 2o ^m B ) ) |
|
| 5 | 1 3 4 | syl2anc | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> A ~<_ ( 2o ^m B ) ) |
| 6 | mapdom1 | |- ( A ~<_ ( 2o ^m B ) -> ( A ^m B ) ~<_ ( ( 2o ^m B ) ^m B ) ) |
|
| 7 | 5 6 | syl | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( A ^m B ) ~<_ ( ( 2o ^m B ) ^m B ) ) |
| 8 | 2on | |- 2o e. On |
|
| 9 | simpll | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> B e. dom card ) |
|
| 10 | mapxpen | |- ( ( 2o e. On /\ B e. dom card /\ B e. dom card ) -> ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m ( B X. B ) ) ) |
|
| 11 | 8 9 9 10 | mp3an2i | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m ( B X. B ) ) ) |
| 12 | 8 | elexi | |- 2o e. _V |
| 13 | 12 | enref | |- 2o ~~ 2o |
| 14 | infxpidm2 | |- ( ( B e. dom card /\ _om ~<_ B ) -> ( B X. B ) ~~ B ) |
|
| 15 | 14 | adantr | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( B X. B ) ~~ B ) |
| 16 | mapen | |- ( ( 2o ~~ 2o /\ ( B X. B ) ~~ B ) -> ( 2o ^m ( B X. B ) ) ~~ ( 2o ^m B ) ) |
|
| 17 | 13 15 16 | sylancr | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( 2o ^m ( B X. B ) ) ~~ ( 2o ^m B ) ) |
| 18 | entr | |- ( ( ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m ( B X. B ) ) /\ ( 2o ^m ( B X. B ) ) ~~ ( 2o ^m B ) ) -> ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m B ) ) |
|
| 19 | 11 17 18 | syl2anc | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m B ) ) |
| 20 | 3 | ensymd | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( 2o ^m B ) ~~ ~P B ) |
| 21 | entr | |- ( ( ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m B ) /\ ( 2o ^m B ) ~~ ~P B ) -> ( ( 2o ^m B ) ^m B ) ~~ ~P B ) |
|
| 22 | 19 20 21 | syl2anc | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( ( 2o ^m B ) ^m B ) ~~ ~P B ) |
| 23 | domentr | |- ( ( ( A ^m B ) ~<_ ( ( 2o ^m B ) ^m B ) /\ ( ( 2o ^m B ) ^m B ) ~~ ~P B ) -> ( A ^m B ) ~<_ ~P B ) |
|
| 24 | 7 22 23 | syl2anc | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( A ^m B ) ~<_ ~P B ) |
| 25 | mapdom1 | |- ( 2o ~<_ A -> ( 2o ^m B ) ~<_ ( A ^m B ) ) |
|
| 26 | 25 | ad2antrl | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( 2o ^m B ) ~<_ ( A ^m B ) ) |
| 27 | endomtr | |- ( ( ~P B ~~ ( 2o ^m B ) /\ ( 2o ^m B ) ~<_ ( A ^m B ) ) -> ~P B ~<_ ( A ^m B ) ) |
|
| 28 | 3 26 27 | syl2anc | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ~P B ~<_ ( A ^m B ) ) |
| 29 | sbth | |- ( ( ( A ^m B ) ~<_ ~P B /\ ~P B ~<_ ( A ^m B ) ) -> ( A ^m B ) ~~ ~P B ) |
|
| 30 | 24 28 29 | syl2anc | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( A ^m B ) ~~ ~P B ) |