This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fidomtri | |- ( ( A e. Fin /\ B e. V ) -> ( A ~<_ B <-> -. B ~< A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnsym | |- ( A ~<_ B -> -. B ~< A ) |
|
| 2 | finnum | |- ( A e. Fin -> A e. dom card ) |
|
| 3 | 2 | adantr | |- ( ( A e. Fin /\ B e. V ) -> A e. dom card ) |
| 4 | finnum | |- ( B e. Fin -> B e. dom card ) |
|
| 5 | domtri2 | |- ( ( A e. dom card /\ B e. dom card ) -> ( A ~<_ B <-> -. B ~< A ) ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( ( A e. Fin /\ B e. V ) /\ B e. Fin ) -> ( A ~<_ B <-> -. B ~< A ) ) |
| 7 | 6 | biimprd | |- ( ( ( A e. Fin /\ B e. V ) /\ B e. Fin ) -> ( -. B ~< A -> A ~<_ B ) ) |
| 8 | isinffi | |- ( ( -. B e. Fin /\ A e. Fin ) -> E. a a : A -1-1-> B ) |
|
| 9 | 8 | ancoms | |- ( ( A e. Fin /\ -. B e. Fin ) -> E. a a : A -1-1-> B ) |
| 10 | 9 | adantlr | |- ( ( ( A e. Fin /\ B e. V ) /\ -. B e. Fin ) -> E. a a : A -1-1-> B ) |
| 11 | brdomg | |- ( B e. V -> ( A ~<_ B <-> E. a a : A -1-1-> B ) ) |
|
| 12 | 11 | ad2antlr | |- ( ( ( A e. Fin /\ B e. V ) /\ -. B e. Fin ) -> ( A ~<_ B <-> E. a a : A -1-1-> B ) ) |
| 13 | 10 12 | mpbird | |- ( ( ( A e. Fin /\ B e. V ) /\ -. B e. Fin ) -> A ~<_ B ) |
| 14 | 13 | a1d | |- ( ( ( A e. Fin /\ B e. V ) /\ -. B e. Fin ) -> ( -. B ~< A -> A ~<_ B ) ) |
| 15 | 7 14 | pm2.61dan | |- ( ( A e. Fin /\ B e. V ) -> ( -. B ~< A -> A ~<_ B ) ) |
| 16 | 1 15 | impbid2 | |- ( ( A e. Fin /\ B e. V ) -> ( A ~<_ B <-> -. B ~< A ) ) |