This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If X is a first-countable Hausdorff space, then the cardinality of the closure of a set A is bounded by NN to the power A . In particular, a first-countable Hausdorff space with a dense subset A has cardinality at most A ^ NN , and a separable first-countable Hausdorff space has cardinality at most ~P NN . (Compare hauspwpwdom to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hauspwdom.1 | |- X = U. J |
|
| Assertion | hausmapdom | |- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( ( cls ` J ) ` A ) ~<_ ( A ^m NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hauspwdom.1 | |- X = U. J |
|
| 2 | 1 | 1stcelcls | |- ( ( J e. 1stc /\ A C_ X ) -> ( x e. ( ( cls ` J ) ` A ) <-> E. f ( f : NN --> A /\ f ( ~~>t ` J ) x ) ) ) |
| 3 | 2 | 3adant1 | |- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( x e. ( ( cls ` J ) ` A ) <-> E. f ( f : NN --> A /\ f ( ~~>t ` J ) x ) ) ) |
| 4 | uniexg | |- ( J e. Haus -> U. J e. _V ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> U. J e. _V ) |
| 6 | 1 5 | eqeltrid | |- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> X e. _V ) |
| 7 | simp3 | |- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> A C_ X ) |
|
| 8 | 6 7 | ssexd | |- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> A e. _V ) |
| 9 | nnex | |- NN e. _V |
|
| 10 | elmapg | |- ( ( A e. _V /\ NN e. _V ) -> ( f e. ( A ^m NN ) <-> f : NN --> A ) ) |
|
| 11 | 8 9 10 | sylancl | |- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( f e. ( A ^m NN ) <-> f : NN --> A ) ) |
| 12 | 11 | anbi1d | |- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( ( f e. ( A ^m NN ) /\ f ( ~~>t ` J ) x ) <-> ( f : NN --> A /\ f ( ~~>t ` J ) x ) ) ) |
| 13 | 12 | exbidv | |- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( E. f ( f e. ( A ^m NN ) /\ f ( ~~>t ` J ) x ) <-> E. f ( f : NN --> A /\ f ( ~~>t ` J ) x ) ) ) |
| 14 | 3 13 | bitr4d | |- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( x e. ( ( cls ` J ) ` A ) <-> E. f ( f e. ( A ^m NN ) /\ f ( ~~>t ` J ) x ) ) ) |
| 15 | df-rex | |- ( E. f e. ( A ^m NN ) f ( ~~>t ` J ) x <-> E. f ( f e. ( A ^m NN ) /\ f ( ~~>t ` J ) x ) ) |
|
| 16 | 14 15 | bitr4di | |- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( x e. ( ( cls ` J ) ` A ) <-> E. f e. ( A ^m NN ) f ( ~~>t ` J ) x ) ) |
| 17 | vex | |- x e. _V |
|
| 18 | 17 | elima | |- ( x e. ( ( ~~>t ` J ) " ( A ^m NN ) ) <-> E. f e. ( A ^m NN ) f ( ~~>t ` J ) x ) |
| 19 | 16 18 | bitr4di | |- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( x e. ( ( cls ` J ) ` A ) <-> x e. ( ( ~~>t ` J ) " ( A ^m NN ) ) ) ) |
| 20 | 19 | eqrdv | |- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( ( cls ` J ) ` A ) = ( ( ~~>t ` J ) " ( A ^m NN ) ) ) |
| 21 | ovex | |- ( A ^m NN ) e. _V |
|
| 22 | lmfun | |- ( J e. Haus -> Fun ( ~~>t ` J ) ) |
|
| 23 | 22 | 3ad2ant1 | |- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> Fun ( ~~>t ` J ) ) |
| 24 | imadomg | |- ( ( A ^m NN ) e. _V -> ( Fun ( ~~>t ` J ) -> ( ( ~~>t ` J ) " ( A ^m NN ) ) ~<_ ( A ^m NN ) ) ) |
|
| 25 | 21 23 24 | mpsyl | |- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( ( ~~>t ` J ) " ( A ^m NN ) ) ~<_ ( A ^m NN ) ) |
| 26 | 20 25 | eqbrtrd | |- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( ( cls ` J ) ` A ) ~<_ ( A ^m NN ) ) |