This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of ordinals dominated by a given set is an ordinal. A shorter (when taking into account lemmas hartogslem1 and hartogslem2 ) proof can be given using the axiom of choice, see ondomon . As its label indicates, this result is used to justify the definition of the Hartogs function df-har . (Contributed by Jeff Hankins, 22-Oct-2009) (Revised by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hartogs | |- ( A e. V -> { x e. On | x ~<_ A } e. On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onelon | |- ( ( z e. On /\ y e. z ) -> y e. On ) |
|
| 2 | vex | |- z e. _V |
|
| 3 | onelss | |- ( z e. On -> ( y e. z -> y C_ z ) ) |
|
| 4 | 3 | imp | |- ( ( z e. On /\ y e. z ) -> y C_ z ) |
| 5 | ssdomg | |- ( z e. _V -> ( y C_ z -> y ~<_ z ) ) |
|
| 6 | 2 4 5 | mpsyl | |- ( ( z e. On /\ y e. z ) -> y ~<_ z ) |
| 7 | 1 6 | jca | |- ( ( z e. On /\ y e. z ) -> ( y e. On /\ y ~<_ z ) ) |
| 8 | domtr | |- ( ( y ~<_ z /\ z ~<_ A ) -> y ~<_ A ) |
|
| 9 | 8 | anim2i | |- ( ( y e. On /\ ( y ~<_ z /\ z ~<_ A ) ) -> ( y e. On /\ y ~<_ A ) ) |
| 10 | 9 | anassrs | |- ( ( ( y e. On /\ y ~<_ z ) /\ z ~<_ A ) -> ( y e. On /\ y ~<_ A ) ) |
| 11 | 7 10 | sylan | |- ( ( ( z e. On /\ y e. z ) /\ z ~<_ A ) -> ( y e. On /\ y ~<_ A ) ) |
| 12 | 11 | exp31 | |- ( z e. On -> ( y e. z -> ( z ~<_ A -> ( y e. On /\ y ~<_ A ) ) ) ) |
| 13 | 12 | com12 | |- ( y e. z -> ( z e. On -> ( z ~<_ A -> ( y e. On /\ y ~<_ A ) ) ) ) |
| 14 | 13 | impd | |- ( y e. z -> ( ( z e. On /\ z ~<_ A ) -> ( y e. On /\ y ~<_ A ) ) ) |
| 15 | breq1 | |- ( x = z -> ( x ~<_ A <-> z ~<_ A ) ) |
|
| 16 | 15 | elrab | |- ( z e. { x e. On | x ~<_ A } <-> ( z e. On /\ z ~<_ A ) ) |
| 17 | breq1 | |- ( x = y -> ( x ~<_ A <-> y ~<_ A ) ) |
|
| 18 | 17 | elrab | |- ( y e. { x e. On | x ~<_ A } <-> ( y e. On /\ y ~<_ A ) ) |
| 19 | 14 16 18 | 3imtr4g | |- ( y e. z -> ( z e. { x e. On | x ~<_ A } -> y e. { x e. On | x ~<_ A } ) ) |
| 20 | 19 | imp | |- ( ( y e. z /\ z e. { x e. On | x ~<_ A } ) -> y e. { x e. On | x ~<_ A } ) |
| 21 | 20 | gen2 | |- A. y A. z ( ( y e. z /\ z e. { x e. On | x ~<_ A } ) -> y e. { x e. On | x ~<_ A } ) |
| 22 | dftr2 | |- ( Tr { x e. On | x ~<_ A } <-> A. y A. z ( ( y e. z /\ z e. { x e. On | x ~<_ A } ) -> y e. { x e. On | x ~<_ A } ) ) |
|
| 23 | 21 22 | mpbir | |- Tr { x e. On | x ~<_ A } |
| 24 | ssrab2 | |- { x e. On | x ~<_ A } C_ On |
|
| 25 | ordon | |- Ord On |
|
| 26 | trssord | |- ( ( Tr { x e. On | x ~<_ A } /\ { x e. On | x ~<_ A } C_ On /\ Ord On ) -> Ord { x e. On | x ~<_ A } ) |
|
| 27 | 23 24 25 26 | mp3an | |- Ord { x e. On | x ~<_ A } |
| 28 | eqid | |- { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } = { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
|
| 29 | eqid | |- { <. s , t >. | E. w e. y E. z e. y ( ( s = ( g ` w ) /\ t = ( g ` z ) ) /\ w _E z ) } = { <. s , t >. | E. w e. y E. z e. y ( ( s = ( g ` w ) /\ t = ( g ` z ) ) /\ w _E z ) } |
|
| 30 | 28 29 | hartogslem2 | |- ( A e. V -> { x e. On | x ~<_ A } e. _V ) |
| 31 | elong | |- ( { x e. On | x ~<_ A } e. _V -> ( { x e. On | x ~<_ A } e. On <-> Ord { x e. On | x ~<_ A } ) ) |
|
| 32 | 30 31 | syl | |- ( A e. V -> ( { x e. On | x ~<_ A } e. On <-> Ord { x e. On | x ~<_ A } ) ) |
| 33 | 27 32 | mpbiri | |- ( A e. V -> { x e. On | x ~<_ A } e. On ) |