This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hartogs . (Contributed by Mario Carneiro, 14-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hartogslem.2 | |- F = { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
|
| hartogslem.3 | |- R = { <. s , t >. | E. w e. y E. z e. y ( ( s = ( f ` w ) /\ t = ( f ` z ) ) /\ w _E z ) } |
||
| Assertion | hartogslem2 | |- ( A e. V -> { x e. On | x ~<_ A } e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hartogslem.2 | |- F = { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
|
| 2 | hartogslem.3 | |- R = { <. s , t >. | E. w e. y E. z e. y ( ( s = ( f ` w ) /\ t = ( f ` z ) ) /\ w _E z ) } |
|
| 3 | 1 2 | hartogslem1 | |- ( dom F C_ ~P ( A X. A ) /\ Fun F /\ ( A e. V -> ran F = { x e. On | x ~<_ A } ) ) |
| 4 | 3 | simp3i | |- ( A e. V -> ran F = { x e. On | x ~<_ A } ) |
| 5 | 3 | simp2i | |- Fun F |
| 6 | 3 | simp1i | |- dom F C_ ~P ( A X. A ) |
| 7 | sqxpexg | |- ( A e. V -> ( A X. A ) e. _V ) |
|
| 8 | 7 | pwexd | |- ( A e. V -> ~P ( A X. A ) e. _V ) |
| 9 | ssexg | |- ( ( dom F C_ ~P ( A X. A ) /\ ~P ( A X. A ) e. _V ) -> dom F e. _V ) |
|
| 10 | 6 8 9 | sylancr | |- ( A e. V -> dom F e. _V ) |
| 11 | funex | |- ( ( Fun F /\ dom F e. _V ) -> F e. _V ) |
|
| 12 | 5 10 11 | sylancr | |- ( A e. V -> F e. _V ) |
| 13 | rnexg | |- ( F e. _V -> ran F e. _V ) |
|
| 14 | 12 13 | syl | |- ( A e. V -> ran F e. _V ) |
| 15 | 4 14 | eqeltrrd | |- ( A e. V -> { x e. On | x ~<_ A } e. _V ) |