This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995) (Revised by Mario Carneiro, 4-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmopab | |- dom { <. x , y >. | ph } = { x | E. y ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfopab1 | |- F/_ x { <. x , y >. | ph } |
|
| 2 | nfopab2 | |- F/_ y { <. x , y >. | ph } |
|
| 3 | 1 2 | dfdmf | |- dom { <. x , y >. | ph } = { x | E. y x { <. x , y >. | ph } y } |
| 4 | df-br | |- ( x { <. x , y >. | ph } y <-> <. x , y >. e. { <. x , y >. | ph } ) |
|
| 5 | opabidw | |- ( <. x , y >. e. { <. x , y >. | ph } <-> ph ) |
|
| 6 | 4 5 | bitri | |- ( x { <. x , y >. | ph } y <-> ph ) |
| 7 | 6 | exbii | |- ( E. y x { <. x , y >. | ph } y <-> E. y ph ) |
| 8 | 7 | abbii | |- { x | E. y x { <. x , y >. | ph } y } = { x | E. y ph } |
| 9 | 3 8 | eqtri | |- dom { <. x , y >. | ph } = { x | E. y ph } |