This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is irreflexive. Definition of irreflexivity in Schechter p. 51. (Contributed by NM, 9-Sep-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intirr | |- ( ( R i^i _I ) = (/) <-> A. x -. x R x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom | |- ( R i^i _I ) = ( _I i^i R ) |
|
| 2 | 1 | eqeq1i | |- ( ( R i^i _I ) = (/) <-> ( _I i^i R ) = (/) ) |
| 3 | disj2 | |- ( ( _I i^i R ) = (/) <-> _I C_ ( _V \ R ) ) |
|
| 4 | reli | |- Rel _I |
|
| 5 | ssrel | |- ( Rel _I -> ( _I C_ ( _V \ R ) <-> A. x A. y ( <. x , y >. e. _I -> <. x , y >. e. ( _V \ R ) ) ) ) |
|
| 6 | 4 5 | ax-mp | |- ( _I C_ ( _V \ R ) <-> A. x A. y ( <. x , y >. e. _I -> <. x , y >. e. ( _V \ R ) ) ) |
| 7 | 2 3 6 | 3bitri | |- ( ( R i^i _I ) = (/) <-> A. x A. y ( <. x , y >. e. _I -> <. x , y >. e. ( _V \ R ) ) ) |
| 8 | equcom | |- ( y = x <-> x = y ) |
|
| 9 | vex | |- y e. _V |
|
| 10 | 9 | ideq | |- ( x _I y <-> x = y ) |
| 11 | df-br | |- ( x _I y <-> <. x , y >. e. _I ) |
|
| 12 | 8 10 11 | 3bitr2i | |- ( y = x <-> <. x , y >. e. _I ) |
| 13 | opex | |- <. x , y >. e. _V |
|
| 14 | 13 | biantrur | |- ( -. <. x , y >. e. R <-> ( <. x , y >. e. _V /\ -. <. x , y >. e. R ) ) |
| 15 | eldif | |- ( <. x , y >. e. ( _V \ R ) <-> ( <. x , y >. e. _V /\ -. <. x , y >. e. R ) ) |
|
| 16 | 14 15 | bitr4i | |- ( -. <. x , y >. e. R <-> <. x , y >. e. ( _V \ R ) ) |
| 17 | df-br | |- ( x R y <-> <. x , y >. e. R ) |
|
| 18 | 16 17 | xchnxbir | |- ( -. x R y <-> <. x , y >. e. ( _V \ R ) ) |
| 19 | 12 18 | imbi12i | |- ( ( y = x -> -. x R y ) <-> ( <. x , y >. e. _I -> <. x , y >. e. ( _V \ R ) ) ) |
| 20 | 19 | 2albii | |- ( A. x A. y ( y = x -> -. x R y ) <-> A. x A. y ( <. x , y >. e. _I -> <. x , y >. e. ( _V \ R ) ) ) |
| 21 | breq2 | |- ( y = x -> ( x R y <-> x R x ) ) |
|
| 22 | 21 | notbid | |- ( y = x -> ( -. x R y <-> -. x R x ) ) |
| 23 | 22 | equsalvw | |- ( A. y ( y = x -> -. x R y ) <-> -. x R x ) |
| 24 | 23 | albii | |- ( A. x A. y ( y = x -> -. x R y ) <-> A. x -. x R x ) |
| 25 | 7 20 24 | 3bitr2i | |- ( ( R i^i _I ) = (/) <-> A. x -. x R x ) |