This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gzrngunit . (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gzrng.1 | |- Z = ( CCfld |`s Z[i] ) |
|
| Assertion | gzrngunitlem | |- ( A e. ( Unit ` Z ) -> 1 <_ ( abs ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gzrng.1 | |- Z = ( CCfld |`s Z[i] ) |
|
| 2 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 3 | ax-1ne0 | |- 1 =/= 0 |
|
| 4 | gzsubrg | |- Z[i] e. ( SubRing ` CCfld ) |
|
| 5 | 1 | subrgring | |- ( Z[i] e. ( SubRing ` CCfld ) -> Z e. Ring ) |
| 6 | eqid | |- ( Unit ` Z ) = ( Unit ` Z ) |
|
| 7 | subrgsubg | |- ( Z[i] e. ( SubRing ` CCfld ) -> Z[i] e. ( SubGrp ` CCfld ) ) |
|
| 8 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 9 | 1 8 | subg0 | |- ( Z[i] e. ( SubGrp ` CCfld ) -> 0 = ( 0g ` Z ) ) |
| 10 | 4 7 9 | mp2b | |- 0 = ( 0g ` Z ) |
| 11 | cnfld1 | |- 1 = ( 1r ` CCfld ) |
|
| 12 | 1 11 | subrg1 | |- ( Z[i] e. ( SubRing ` CCfld ) -> 1 = ( 1r ` Z ) ) |
| 13 | 4 12 | ax-mp | |- 1 = ( 1r ` Z ) |
| 14 | 6 10 13 | 0unit | |- ( Z e. Ring -> ( 0 e. ( Unit ` Z ) <-> 1 = 0 ) ) |
| 15 | 4 5 14 | mp2b | |- ( 0 e. ( Unit ` Z ) <-> 1 = 0 ) |
| 16 | 3 15 | nemtbir | |- -. 0 e. ( Unit ` Z ) |
| 17 | 1 | subrgbas | |- ( Z[i] e. ( SubRing ` CCfld ) -> Z[i] = ( Base ` Z ) ) |
| 18 | 4 17 | ax-mp | |- Z[i] = ( Base ` Z ) |
| 19 | 18 6 | unitcl | |- ( A e. ( Unit ` Z ) -> A e. Z[i] ) |
| 20 | gzabssqcl | |- ( A e. Z[i] -> ( ( abs ` A ) ^ 2 ) e. NN0 ) |
|
| 21 | 19 20 | syl | |- ( A e. ( Unit ` Z ) -> ( ( abs ` A ) ^ 2 ) e. NN0 ) |
| 22 | elnn0 | |- ( ( ( abs ` A ) ^ 2 ) e. NN0 <-> ( ( ( abs ` A ) ^ 2 ) e. NN \/ ( ( abs ` A ) ^ 2 ) = 0 ) ) |
|
| 23 | 21 22 | sylib | |- ( A e. ( Unit ` Z ) -> ( ( ( abs ` A ) ^ 2 ) e. NN \/ ( ( abs ` A ) ^ 2 ) = 0 ) ) |
| 24 | 23 | ord | |- ( A e. ( Unit ` Z ) -> ( -. ( ( abs ` A ) ^ 2 ) e. NN -> ( ( abs ` A ) ^ 2 ) = 0 ) ) |
| 25 | gzcn | |- ( A e. Z[i] -> A e. CC ) |
|
| 26 | 19 25 | syl | |- ( A e. ( Unit ` Z ) -> A e. CC ) |
| 27 | 26 | abscld | |- ( A e. ( Unit ` Z ) -> ( abs ` A ) e. RR ) |
| 28 | 27 | recnd | |- ( A e. ( Unit ` Z ) -> ( abs ` A ) e. CC ) |
| 29 | sqeq0 | |- ( ( abs ` A ) e. CC -> ( ( ( abs ` A ) ^ 2 ) = 0 <-> ( abs ` A ) = 0 ) ) |
|
| 30 | 28 29 | syl | |- ( A e. ( Unit ` Z ) -> ( ( ( abs ` A ) ^ 2 ) = 0 <-> ( abs ` A ) = 0 ) ) |
| 31 | 26 | abs00ad | |- ( A e. ( Unit ` Z ) -> ( ( abs ` A ) = 0 <-> A = 0 ) ) |
| 32 | eleq1 | |- ( A = 0 -> ( A e. ( Unit ` Z ) <-> 0 e. ( Unit ` Z ) ) ) |
|
| 33 | 32 | biimpcd | |- ( A e. ( Unit ` Z ) -> ( A = 0 -> 0 e. ( Unit ` Z ) ) ) |
| 34 | 31 33 | sylbid | |- ( A e. ( Unit ` Z ) -> ( ( abs ` A ) = 0 -> 0 e. ( Unit ` Z ) ) ) |
| 35 | 30 34 | sylbid | |- ( A e. ( Unit ` Z ) -> ( ( ( abs ` A ) ^ 2 ) = 0 -> 0 e. ( Unit ` Z ) ) ) |
| 36 | 24 35 | syld | |- ( A e. ( Unit ` Z ) -> ( -. ( ( abs ` A ) ^ 2 ) e. NN -> 0 e. ( Unit ` Z ) ) ) |
| 37 | 16 36 | mt3i | |- ( A e. ( Unit ` Z ) -> ( ( abs ` A ) ^ 2 ) e. NN ) |
| 38 | 37 | nnge1d | |- ( A e. ( Unit ` Z ) -> 1 <_ ( ( abs ` A ) ^ 2 ) ) |
| 39 | 2 38 | eqbrtrid | |- ( A e. ( Unit ` Z ) -> ( 1 ^ 2 ) <_ ( ( abs ` A ) ^ 2 ) ) |
| 40 | 26 | absge0d | |- ( A e. ( Unit ` Z ) -> 0 <_ ( abs ` A ) ) |
| 41 | 1re | |- 1 e. RR |
|
| 42 | 0le1 | |- 0 <_ 1 |
|
| 43 | le2sq | |- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) -> ( 1 <_ ( abs ` A ) <-> ( 1 ^ 2 ) <_ ( ( abs ` A ) ^ 2 ) ) ) |
|
| 44 | 41 42 43 | mpanl12 | |- ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( 1 <_ ( abs ` A ) <-> ( 1 ^ 2 ) <_ ( ( abs ` A ) ^ 2 ) ) ) |
| 45 | 27 40 44 | syl2anc | |- ( A e. ( Unit ` Z ) -> ( 1 <_ ( abs ` A ) <-> ( 1 ^ 2 ) <_ ( ( abs ` A ) ^ 2 ) ) ) |
| 46 | 39 45 | mpbird | |- ( A e. ( Unit ` Z ) -> 1 <_ ( abs ` A ) ) |