This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square function is nondecreasing on nonnegative reals. (Contributed by NM, 18-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | le2sq | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A <_ B <-> ( A ^ 2 ) <_ ( B ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | le2msq | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A <_ B <-> ( A x. A ) <_ ( B x. B ) ) ) |
|
| 2 | recn | |- ( A e. RR -> A e. CC ) |
|
| 3 | recn | |- ( B e. RR -> B e. CC ) |
|
| 4 | sqval | |- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
|
| 5 | sqval | |- ( B e. CC -> ( B ^ 2 ) = ( B x. B ) ) |
|
| 6 | 4 5 | breqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) <_ ( B ^ 2 ) <-> ( A x. A ) <_ ( B x. B ) ) ) |
| 7 | 2 3 6 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( A ^ 2 ) <_ ( B ^ 2 ) <-> ( A x. A ) <_ ( B x. B ) ) ) |
| 8 | 7 | ad2ant2r | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A ^ 2 ) <_ ( B ^ 2 ) <-> ( A x. A ) <_ ( B x. B ) ) ) |
| 9 | 1 8 | bitr4d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A <_ B <-> ( A ^ 2 ) <_ ( B ^ 2 ) ) ) |