This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a finite group sum. This theorem has a weaker hypothesis than gsumzcl , because it is not required that F is a function (actually, the hypothesis always holds for any proper class F ). (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 1-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzcl.b | |- B = ( Base ` G ) |
|
| gsumzcl.0 | |- .0. = ( 0g ` G ) |
||
| gsumzcl.z | |- Z = ( Cntz ` G ) |
||
| gsumzcl.g | |- ( ph -> G e. Mnd ) |
||
| gsumzcl.a | |- ( ph -> A e. V ) |
||
| gsumzcl.f | |- ( ph -> F : A --> B ) |
||
| gsumzcl.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
||
| gsumzcl2.w | |- ( ph -> ( F supp .0. ) e. Fin ) |
||
| Assertion | gsumzcl2 | |- ( ph -> ( G gsum F ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzcl.b | |- B = ( Base ` G ) |
|
| 2 | gsumzcl.0 | |- .0. = ( 0g ` G ) |
|
| 3 | gsumzcl.z | |- Z = ( Cntz ` G ) |
|
| 4 | gsumzcl.g | |- ( ph -> G e. Mnd ) |
|
| 5 | gsumzcl.a | |- ( ph -> A e. V ) |
|
| 6 | gsumzcl.f | |- ( ph -> F : A --> B ) |
|
| 7 | gsumzcl.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
|
| 8 | gsumzcl2.w | |- ( ph -> ( F supp .0. ) e. Fin ) |
|
| 9 | 2 | fvexi | |- .0. e. _V |
| 10 | 9 | a1i | |- ( ph -> .0. e. _V ) |
| 11 | ssidd | |- ( ph -> ( F supp .0. ) C_ ( F supp .0. ) ) |
|
| 12 | 6 5 10 11 | gsumcllem | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> F = ( k e. A |-> .0. ) ) |
| 13 | 12 | oveq2d | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( G gsum F ) = ( G gsum ( k e. A |-> .0. ) ) ) |
| 14 | 2 | gsumz | |- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |
| 15 | 4 5 14 | syl2anc | |- ( ph -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |
| 16 | 15 | adantr | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |
| 17 | 13 16 | eqtrd | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( G gsum F ) = .0. ) |
| 18 | 1 2 | mndidcl | |- ( G e. Mnd -> .0. e. B ) |
| 19 | 4 18 | syl | |- ( ph -> .0. e. B ) |
| 20 | 19 | adantr | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> .0. e. B ) |
| 21 | 17 20 | eqeltrd | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( G gsum F ) e. B ) |
| 22 | 21 | ex | |- ( ph -> ( ( F supp .0. ) = (/) -> ( G gsum F ) e. B ) ) |
| 23 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 24 | 4 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> G e. Mnd ) |
| 25 | 5 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> A e. V ) |
| 26 | 6 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> F : A --> B ) |
| 27 | 7 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ran F C_ ( Z ` ran F ) ) |
| 28 | simprl | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( # ` ( F supp .0. ) ) e. NN ) |
|
| 29 | f1of1 | |- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( F supp .0. ) ) |
|
| 30 | 29 | ad2antll | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( F supp .0. ) ) |
| 31 | suppssdm | |- ( F supp .0. ) C_ dom F |
|
| 32 | 31 6 | fssdm | |- ( ph -> ( F supp .0. ) C_ A ) |
| 33 | 32 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F supp .0. ) C_ A ) |
| 34 | f1ss | |- ( ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( F supp .0. ) /\ ( F supp .0. ) C_ A ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> A ) |
|
| 35 | 30 33 34 | syl2anc | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> A ) |
| 36 | ssid | |- ( F supp .0. ) C_ ( F supp .0. ) |
|
| 37 | f1ofo | |- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -onto-> ( F supp .0. ) ) |
|
| 38 | forn | |- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -onto-> ( F supp .0. ) -> ran f = ( F supp .0. ) ) |
|
| 39 | 37 38 | syl | |- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> ran f = ( F supp .0. ) ) |
| 40 | 39 | ad2antll | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ran f = ( F supp .0. ) ) |
| 41 | 36 40 | sseqtrrid | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F supp .0. ) C_ ran f ) |
| 42 | eqid | |- ( ( F o. f ) supp .0. ) = ( ( F o. f ) supp .0. ) |
|
| 43 | 1 2 23 3 24 25 26 27 28 35 41 42 | gsumval3 | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( G gsum F ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( F supp .0. ) ) ) ) |
| 44 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 45 | 28 44 | eleqtrdi | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( # ` ( F supp .0. ) ) e. ( ZZ>= ` 1 ) ) |
| 46 | f1f | |- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> A -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) --> A ) |
|
| 47 | 35 46 | syl | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) --> A ) |
| 48 | fco | |- ( ( F : A --> B /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) --> A ) -> ( F o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) --> B ) |
|
| 49 | 26 47 48 | syl2anc | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) --> B ) |
| 50 | 49 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) /\ k e. ( 1 ... ( # ` ( F supp .0. ) ) ) ) -> ( ( F o. f ) ` k ) e. B ) |
| 51 | 1 23 | mndcl | |- ( ( G e. Mnd /\ k e. B /\ x e. B ) -> ( k ( +g ` G ) x ) e. B ) |
| 52 | 51 | 3expb | |- ( ( G e. Mnd /\ ( k e. B /\ x e. B ) ) -> ( k ( +g ` G ) x ) e. B ) |
| 53 | 24 52 | sylan | |- ( ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) /\ ( k e. B /\ x e. B ) ) -> ( k ( +g ` G ) x ) e. B ) |
| 54 | 45 50 53 | seqcl | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( F supp .0. ) ) ) e. B ) |
| 55 | 43 54 | eqeltrd | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( G gsum F ) e. B ) |
| 56 | 55 | expr | |- ( ( ph /\ ( # ` ( F supp .0. ) ) e. NN ) -> ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> ( G gsum F ) e. B ) ) |
| 57 | 56 | exlimdv | |- ( ( ph /\ ( # ` ( F supp .0. ) ) e. NN ) -> ( E. f f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> ( G gsum F ) e. B ) ) |
| 58 | 57 | expimpd | |- ( ph -> ( ( ( # ` ( F supp .0. ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) -> ( G gsum F ) e. B ) ) |
| 59 | fz1f1o | |- ( ( F supp .0. ) e. Fin -> ( ( F supp .0. ) = (/) \/ ( ( # ` ( F supp .0. ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) ) |
|
| 60 | 8 59 | syl | |- ( ph -> ( ( F supp .0. ) = (/) \/ ( ( # ` ( F supp .0. ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) ) |
| 61 | 22 58 60 | mpjaod | |- ( ph -> ( G gsum F ) e. B ) |