This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019) (Proof shortened by AV, 31-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgply1.s | |- S = ( Poly1 ` R ) |
|
| subrgply1.h | |- H = ( R |`s T ) |
||
| subrgply1.u | |- U = ( Poly1 ` H ) |
||
| subrgply1.b | |- B = ( Base ` U ) |
||
| gsumply1subr.s | |- ( ph -> T e. ( SubRing ` R ) ) |
||
| gsumply1subr.a | |- ( ph -> A e. V ) |
||
| gsumply1subr.f | |- ( ph -> F : A --> B ) |
||
| Assertion | gsumply1subr | |- ( ph -> ( S gsum F ) = ( U gsum F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgply1.s | |- S = ( Poly1 ` R ) |
|
| 2 | subrgply1.h | |- H = ( R |`s T ) |
|
| 3 | subrgply1.u | |- U = ( Poly1 ` H ) |
|
| 4 | subrgply1.b | |- B = ( Base ` U ) |
|
| 5 | gsumply1subr.s | |- ( ph -> T e. ( SubRing ` R ) ) |
|
| 6 | gsumply1subr.a | |- ( ph -> A e. V ) |
|
| 7 | gsumply1subr.f | |- ( ph -> F : A --> B ) |
|
| 8 | 1 2 3 4 | subrgply1 | |- ( T e. ( SubRing ` R ) -> B e. ( SubRing ` S ) ) |
| 9 | subrgsubg | |- ( B e. ( SubRing ` S ) -> B e. ( SubGrp ` S ) ) |
|
| 10 | subgsubm | |- ( B e. ( SubGrp ` S ) -> B e. ( SubMnd ` S ) ) |
|
| 11 | 5 8 9 10 | 4syl | |- ( ph -> B e. ( SubMnd ` S ) ) |
| 12 | eqid | |- ( S |`s B ) = ( S |`s B ) |
|
| 13 | 6 11 7 12 | gsumsubm | |- ( ph -> ( S gsum F ) = ( ( S |`s B ) gsum F ) ) |
| 14 | 7 6 | fexd | |- ( ph -> F e. _V ) |
| 15 | ovexd | |- ( ph -> ( S |`s B ) e. _V ) |
|
| 16 | 3 | fvexi | |- U e. _V |
| 17 | 16 | a1i | |- ( ph -> U e. _V ) |
| 18 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 19 | 4 | oveq2i | |- ( S |`s B ) = ( S |`s ( Base ` U ) ) |
| 20 | 1 2 3 18 5 19 | ressply1bas | |- ( ph -> ( Base ` U ) = ( Base ` ( S |`s B ) ) ) |
| 21 | 20 | eqcomd | |- ( ph -> ( Base ` ( S |`s B ) ) = ( Base ` U ) ) |
| 22 | 12 | subrgring | |- ( B e. ( SubRing ` S ) -> ( S |`s B ) e. Ring ) |
| 23 | ringmgm | |- ( ( S |`s B ) e. Ring -> ( S |`s B ) e. Mgm ) |
|
| 24 | 5 8 22 23 | 4syl | |- ( ph -> ( S |`s B ) e. Mgm ) |
| 25 | simpl | |- ( ( ph /\ ( s e. ( Base ` ( S |`s B ) ) /\ t e. ( Base ` ( S |`s B ) ) ) ) -> ph ) |
|
| 26 | 1 2 3 4 5 12 | ressply1bas | |- ( ph -> B = ( Base ` ( S |`s B ) ) ) |
| 27 | 26 | eqcomd | |- ( ph -> ( Base ` ( S |`s B ) ) = B ) |
| 28 | 27 | eleq2d | |- ( ph -> ( s e. ( Base ` ( S |`s B ) ) <-> s e. B ) ) |
| 29 | 28 | biimpcd | |- ( s e. ( Base ` ( S |`s B ) ) -> ( ph -> s e. B ) ) |
| 30 | 29 | adantr | |- ( ( s e. ( Base ` ( S |`s B ) ) /\ t e. ( Base ` ( S |`s B ) ) ) -> ( ph -> s e. B ) ) |
| 31 | 30 | impcom | |- ( ( ph /\ ( s e. ( Base ` ( S |`s B ) ) /\ t e. ( Base ` ( S |`s B ) ) ) ) -> s e. B ) |
| 32 | 27 | eleq2d | |- ( ph -> ( t e. ( Base ` ( S |`s B ) ) <-> t e. B ) ) |
| 33 | 32 | biimpcd | |- ( t e. ( Base ` ( S |`s B ) ) -> ( ph -> t e. B ) ) |
| 34 | 33 | adantl | |- ( ( s e. ( Base ` ( S |`s B ) ) /\ t e. ( Base ` ( S |`s B ) ) ) -> ( ph -> t e. B ) ) |
| 35 | 34 | impcom | |- ( ( ph /\ ( s e. ( Base ` ( S |`s B ) ) /\ t e. ( Base ` ( S |`s B ) ) ) ) -> t e. B ) |
| 36 | 1 2 3 4 5 12 | ressply1add | |- ( ( ph /\ ( s e. B /\ t e. B ) ) -> ( s ( +g ` U ) t ) = ( s ( +g ` ( S |`s B ) ) t ) ) |
| 37 | 25 31 35 36 | syl12anc | |- ( ( ph /\ ( s e. ( Base ` ( S |`s B ) ) /\ t e. ( Base ` ( S |`s B ) ) ) ) -> ( s ( +g ` U ) t ) = ( s ( +g ` ( S |`s B ) ) t ) ) |
| 38 | 37 | eqcomd | |- ( ( ph /\ ( s e. ( Base ` ( S |`s B ) ) /\ t e. ( Base ` ( S |`s B ) ) ) ) -> ( s ( +g ` ( S |`s B ) ) t ) = ( s ( +g ` U ) t ) ) |
| 39 | 7 | ffund | |- ( ph -> Fun F ) |
| 40 | 7 | frnd | |- ( ph -> ran F C_ B ) |
| 41 | 40 26 | sseqtrd | |- ( ph -> ran F C_ ( Base ` ( S |`s B ) ) ) |
| 42 | 14 15 17 21 24 38 39 41 | gsummgmpropd | |- ( ph -> ( ( S |`s B ) gsum F ) = ( U gsum F ) ) |
| 43 | 13 42 | eqtrd | |- ( ph -> ( S gsum F ) = ( U gsum F ) ) |