This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgply1.s | |- S = ( Poly1 ` R ) |
|
| subrgply1.h | |- H = ( R |`s T ) |
||
| subrgply1.u | |- U = ( Poly1 ` H ) |
||
| subrgply1.b | |- B = ( Base ` U ) |
||
| Assertion | subrgply1 | |- ( T e. ( SubRing ` R ) -> B e. ( SubRing ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgply1.s | |- S = ( Poly1 ` R ) |
|
| 2 | subrgply1.h | |- H = ( R |`s T ) |
|
| 3 | subrgply1.u | |- U = ( Poly1 ` H ) |
|
| 4 | subrgply1.b | |- B = ( Base ` U ) |
|
| 5 | 1on | |- 1o e. On |
|
| 6 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 7 | eqid | |- ( 1o mPoly H ) = ( 1o mPoly H ) |
|
| 8 | 3 4 | ply1bas | |- B = ( Base ` ( 1o mPoly H ) ) |
| 9 | 6 2 7 8 | subrgmpl | |- ( ( 1o e. On /\ T e. ( SubRing ` R ) ) -> B e. ( SubRing ` ( 1o mPoly R ) ) ) |
| 10 | 5 9 | mpan | |- ( T e. ( SubRing ` R ) -> B e. ( SubRing ` ( 1o mPoly R ) ) ) |
| 11 | eqidd | |- ( T e. ( SubRing ` R ) -> ( Base ` S ) = ( Base ` S ) ) |
|
| 12 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 13 | 1 12 | ply1bas | |- ( Base ` S ) = ( Base ` ( 1o mPoly R ) ) |
| 14 | 13 | a1i | |- ( T e. ( SubRing ` R ) -> ( Base ` S ) = ( Base ` ( 1o mPoly R ) ) ) |
| 15 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 16 | 1 6 15 | ply1plusg | |- ( +g ` S ) = ( +g ` ( 1o mPoly R ) ) |
| 17 | 16 | a1i | |- ( T e. ( SubRing ` R ) -> ( +g ` S ) = ( +g ` ( 1o mPoly R ) ) ) |
| 18 | 17 | oveqdr | |- ( ( T e. ( SubRing ` R ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( x ( +g ` S ) y ) = ( x ( +g ` ( 1o mPoly R ) ) y ) ) |
| 19 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 20 | 1 6 19 | ply1mulr | |- ( .r ` S ) = ( .r ` ( 1o mPoly R ) ) |
| 21 | 20 | a1i | |- ( T e. ( SubRing ` R ) -> ( .r ` S ) = ( .r ` ( 1o mPoly R ) ) ) |
| 22 | 21 | oveqdr | |- ( ( T e. ( SubRing ` R ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( x ( .r ` S ) y ) = ( x ( .r ` ( 1o mPoly R ) ) y ) ) |
| 23 | 11 14 18 22 | subrgpropd | |- ( T e. ( SubRing ` R ) -> ( SubRing ` S ) = ( SubRing ` ( 1o mPoly R ) ) ) |
| 24 | 10 23 | eleqtrrd | |- ( T e. ( SubRing ` R ) -> B e. ( SubRing ` S ) ) |