This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property deduction for power series base set. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psrbaspropd.e | |- ( ph -> ( Base ` R ) = ( Base ` S ) ) |
|
| Assertion | psrbaspropd | |- ( ph -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbaspropd.e | |- ( ph -> ( Base ` R ) = ( Base ` S ) ) |
|
| 2 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | eqid | |- { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } = { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |
|
| 5 | eqid | |- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
|
| 6 | simpr | |- ( ( ph /\ I e. _V ) -> I e. _V ) |
|
| 7 | 2 3 4 5 6 | psrbas | |- ( ( ph /\ I e. _V ) -> ( Base ` ( I mPwSer R ) ) = ( ( Base ` R ) ^m { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } ) ) |
| 8 | eqid | |- ( I mPwSer S ) = ( I mPwSer S ) |
|
| 9 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 10 | eqid | |- ( Base ` ( I mPwSer S ) ) = ( Base ` ( I mPwSer S ) ) |
|
| 11 | 8 9 4 10 6 | psrbas | |- ( ( ph /\ I e. _V ) -> ( Base ` ( I mPwSer S ) ) = ( ( Base ` S ) ^m { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } ) ) |
| 12 | 1 | adantr | |- ( ( ph /\ I e. _V ) -> ( Base ` R ) = ( Base ` S ) ) |
| 13 | 12 | oveq1d | |- ( ( ph /\ I e. _V ) -> ( ( Base ` R ) ^m { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } ) = ( ( Base ` S ) ^m { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } ) ) |
| 14 | 11 13 | eqtr4d | |- ( ( ph /\ I e. _V ) -> ( Base ` ( I mPwSer S ) ) = ( ( Base ` R ) ^m { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } ) ) |
| 15 | 7 14 | eqtr4d | |- ( ( ph /\ I e. _V ) -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) ) |
| 16 | reldmpsr | |- Rel dom mPwSer |
|
| 17 | 16 | ovprc1 | |- ( -. I e. _V -> ( I mPwSer R ) = (/) ) |
| 18 | 16 | ovprc1 | |- ( -. I e. _V -> ( I mPwSer S ) = (/) ) |
| 19 | 17 18 | eqtr4d | |- ( -. I e. _V -> ( I mPwSer R ) = ( I mPwSer S ) ) |
| 20 | 19 | fveq2d | |- ( -. I e. _V -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) ) |
| 21 | 20 | adantl | |- ( ( ph /\ -. I e. _V ) -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) ) |
| 22 | 15 21 | pm2.61dan | |- ( ph -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) ) |