This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted polynomial algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressply1.s | |- S = ( Poly1 ` R ) |
|
| ressply1.h | |- H = ( R |`s T ) |
||
| ressply1.u | |- U = ( Poly1 ` H ) |
||
| ressply1.b | |- B = ( Base ` U ) |
||
| ressply1.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
||
| ressply1.p | |- P = ( S |`s B ) |
||
| Assertion | ressply1bas | |- ( ph -> B = ( Base ` P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply1.s | |- S = ( Poly1 ` R ) |
|
| 2 | ressply1.h | |- H = ( R |`s T ) |
|
| 3 | ressply1.u | |- U = ( Poly1 ` H ) |
|
| 4 | ressply1.b | |- B = ( Base ` U ) |
|
| 5 | ressply1.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
|
| 6 | ressply1.p | |- P = ( S |`s B ) |
|
| 7 | eqid | |- ( PwSer1 ` H ) = ( PwSer1 ` H ) |
|
| 8 | eqid | |- ( Base ` ( PwSer1 ` H ) ) = ( Base ` ( PwSer1 ` H ) ) |
|
| 9 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 10 | 1 2 3 4 5 7 8 9 | ressply1bas2 | |- ( ph -> B = ( ( Base ` ( PwSer1 ` H ) ) i^i ( Base ` S ) ) ) |
| 11 | inss2 | |- ( ( Base ` ( PwSer1 ` H ) ) i^i ( Base ` S ) ) C_ ( Base ` S ) |
|
| 12 | 10 11 | eqsstrdi | |- ( ph -> B C_ ( Base ` S ) ) |
| 13 | 6 9 | ressbas2 | |- ( B C_ ( Base ` S ) -> B = ( Base ` P ) ) |
| 14 | 12 13 | syl | |- ( ph -> B = ( Base ` P ) ) |