This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressply1.s | |- S = ( Poly1 ` R ) |
|
| ressply1.h | |- H = ( R |`s T ) |
||
| ressply1.u | |- U = ( Poly1 ` H ) |
||
| ressply1.b | |- B = ( Base ` U ) |
||
| ressply1.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
||
| ressply1.p | |- P = ( S |`s B ) |
||
| Assertion | ressply1add | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( +g ` U ) Y ) = ( X ( +g ` P ) Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply1.s | |- S = ( Poly1 ` R ) |
|
| 2 | ressply1.h | |- H = ( R |`s T ) |
|
| 3 | ressply1.u | |- U = ( Poly1 ` H ) |
|
| 4 | ressply1.b | |- B = ( Base ` U ) |
|
| 5 | ressply1.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
|
| 6 | ressply1.p | |- P = ( S |`s B ) |
|
| 7 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 8 | eqid | |- ( 1o mPoly H ) = ( 1o mPoly H ) |
|
| 9 | 3 4 | ply1bas | |- B = ( Base ` ( 1o mPoly H ) ) |
| 10 | 1on | |- 1o e. On |
|
| 11 | 10 | a1i | |- ( ph -> 1o e. On ) |
| 12 | eqid | |- ( ( 1o mPoly R ) |`s B ) = ( ( 1o mPoly R ) |`s B ) |
|
| 13 | 7 2 8 9 11 5 12 | ressmpladd | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( +g ` ( 1o mPoly H ) ) Y ) = ( X ( +g ` ( ( 1o mPoly R ) |`s B ) ) Y ) ) |
| 14 | eqid | |- ( +g ` U ) = ( +g ` U ) |
|
| 15 | 3 8 14 | ply1plusg | |- ( +g ` U ) = ( +g ` ( 1o mPoly H ) ) |
| 16 | 15 | oveqi | |- ( X ( +g ` U ) Y ) = ( X ( +g ` ( 1o mPoly H ) ) Y ) |
| 17 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 18 | 1 7 17 | ply1plusg | |- ( +g ` S ) = ( +g ` ( 1o mPoly R ) ) |
| 19 | 4 | fvexi | |- B e. _V |
| 20 | 6 17 | ressplusg | |- ( B e. _V -> ( +g ` S ) = ( +g ` P ) ) |
| 21 | 19 20 | ax-mp | |- ( +g ` S ) = ( +g ` P ) |
| 22 | eqid | |- ( +g ` ( 1o mPoly R ) ) = ( +g ` ( 1o mPoly R ) ) |
|
| 23 | 12 22 | ressplusg | |- ( B e. _V -> ( +g ` ( 1o mPoly R ) ) = ( +g ` ( ( 1o mPoly R ) |`s B ) ) ) |
| 24 | 19 23 | ax-mp | |- ( +g ` ( 1o mPoly R ) ) = ( +g ` ( ( 1o mPoly R ) |`s B ) ) |
| 25 | 18 21 24 | 3eqtr3i | |- ( +g ` P ) = ( +g ` ( ( 1o mPoly R ) |`s B ) ) |
| 26 | 25 | oveqi | |- ( X ( +g ` P ) Y ) = ( X ( +g ` ( ( 1o mPoly R ) |`s B ) ) Y ) |
| 27 | 13 16 26 | 3eqtr4g | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( +g ` U ) Y ) = ( X ( +g ` P ) Y ) ) |