This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A stronger version of gsumpropd if at least one of the involved structures is a magma, see gsumpropd2 . (Contributed by AV, 31-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummgmpropd.f | |- ( ph -> F e. V ) |
|
| gsummgmpropd.g | |- ( ph -> G e. W ) |
||
| gsummgmpropd.h | |- ( ph -> H e. X ) |
||
| gsummgmpropd.b | |- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
||
| gsummgmpropd.m | |- ( ph -> G e. Mgm ) |
||
| gsummgmpropd.e | |- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) |
||
| gsummgmpropd.n | |- ( ph -> Fun F ) |
||
| gsummgmpropd.r | |- ( ph -> ran F C_ ( Base ` G ) ) |
||
| Assertion | gsummgmpropd | |- ( ph -> ( G gsum F ) = ( H gsum F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummgmpropd.f | |- ( ph -> F e. V ) |
|
| 2 | gsummgmpropd.g | |- ( ph -> G e. W ) |
|
| 3 | gsummgmpropd.h | |- ( ph -> H e. X ) |
|
| 4 | gsummgmpropd.b | |- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
|
| 5 | gsummgmpropd.m | |- ( ph -> G e. Mgm ) |
|
| 6 | gsummgmpropd.e | |- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) |
|
| 7 | gsummgmpropd.n | |- ( ph -> Fun F ) |
|
| 8 | gsummgmpropd.r | |- ( ph -> ran F C_ ( Base ` G ) ) |
|
| 9 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 10 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 11 | 9 10 | mgmcl | |- ( ( G e. Mgm /\ s e. ( Base ` G ) /\ t e. ( Base ` G ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) |
| 12 | 11 | 3expib | |- ( G e. Mgm -> ( ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) ) |
| 13 | 5 12 | syl | |- ( ph -> ( ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) ) |
| 14 | 13 | imp | |- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) |
| 15 | 1 2 3 4 14 6 7 8 | gsumpropd2 | |- ( ph -> ( G gsum F ) = ( H gsum F ) ) |