This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019) (Proof shortened by AV, 31-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgply1.s | ⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) | |
| subrgply1.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| subrgply1.u | ⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) | ||
| subrgply1.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| gsumply1subr.s | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| gsumply1subr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumply1subr.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| Assertion | gsumply1subr | ⊢ ( 𝜑 → ( 𝑆 Σg 𝐹 ) = ( 𝑈 Σg 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgply1.s | ⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) | |
| 2 | subrgply1.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 3 | subrgply1.u | ⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) | |
| 4 | subrgply1.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 5 | gsumply1subr.s | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 6 | gsumply1subr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 7 | gsumply1subr.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 8 | 1 2 3 4 | subrgply1 | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 9 | subrgsubg | ⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝐵 ∈ ( SubGrp ‘ 𝑆 ) ) | |
| 10 | subgsubm | ⊢ ( 𝐵 ∈ ( SubGrp ‘ 𝑆 ) → 𝐵 ∈ ( SubMnd ‘ 𝑆 ) ) | |
| 11 | 5 8 9 10 | 4syl | ⊢ ( 𝜑 → 𝐵 ∈ ( SubMnd ‘ 𝑆 ) ) |
| 12 | eqid | ⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) | |
| 13 | 6 11 7 12 | gsumsubm | ⊢ ( 𝜑 → ( 𝑆 Σg 𝐹 ) = ( ( 𝑆 ↾s 𝐵 ) Σg 𝐹 ) ) |
| 14 | 7 6 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 15 | ovexd | ⊢ ( 𝜑 → ( 𝑆 ↾s 𝐵 ) ∈ V ) | |
| 16 | 3 | fvexi | ⊢ 𝑈 ∈ V |
| 17 | 16 | a1i | ⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 18 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 19 | 4 | oveq2i | ⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s ( Base ‘ 𝑈 ) ) |
| 20 | 1 2 3 18 5 19 | ressply1bas | ⊢ ( 𝜑 → ( Base ‘ 𝑈 ) = ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) |
| 21 | 20 | eqcomd | ⊢ ( 𝜑 → ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) = ( Base ‘ 𝑈 ) ) |
| 22 | 12 | subrgring | ⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑆 ↾s 𝐵 ) ∈ Ring ) |
| 23 | ringmgm | ⊢ ( ( 𝑆 ↾s 𝐵 ) ∈ Ring → ( 𝑆 ↾s 𝐵 ) ∈ Mgm ) | |
| 24 | 5 8 22 23 | 4syl | ⊢ ( 𝜑 → ( 𝑆 ↾s 𝐵 ) ∈ Mgm ) |
| 25 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) ) → 𝜑 ) | |
| 26 | 1 2 3 4 5 12 | ressply1bas | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) |
| 27 | 26 | eqcomd | ⊢ ( 𝜑 → ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) = 𝐵 ) |
| 28 | 27 | eleq2d | ⊢ ( 𝜑 → ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ↔ 𝑠 ∈ 𝐵 ) ) |
| 29 | 28 | biimpcd | ⊢ ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) → ( 𝜑 → 𝑠 ∈ 𝐵 ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) → ( 𝜑 → 𝑠 ∈ 𝐵 ) ) |
| 31 | 30 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) ) → 𝑠 ∈ 𝐵 ) |
| 32 | 27 | eleq2d | ⊢ ( 𝜑 → ( 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ↔ 𝑡 ∈ 𝐵 ) ) |
| 33 | 32 | biimpcd | ⊢ ( 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) → ( 𝜑 → 𝑡 ∈ 𝐵 ) ) |
| 34 | 33 | adantl | ⊢ ( ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) → ( 𝜑 → 𝑡 ∈ 𝐵 ) ) |
| 35 | 34 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) ) → 𝑡 ∈ 𝐵 ) |
| 36 | 1 2 3 4 5 12 | ressply1add | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵 ) ) → ( 𝑠 ( +g ‘ 𝑈 ) 𝑡 ) = ( 𝑠 ( +g ‘ ( 𝑆 ↾s 𝐵 ) ) 𝑡 ) ) |
| 37 | 25 31 35 36 | syl12anc | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) ) → ( 𝑠 ( +g ‘ 𝑈 ) 𝑡 ) = ( 𝑠 ( +g ‘ ( 𝑆 ↾s 𝐵 ) ) 𝑡 ) ) |
| 38 | 37 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) ) → ( 𝑠 ( +g ‘ ( 𝑆 ↾s 𝐵 ) ) 𝑡 ) = ( 𝑠 ( +g ‘ 𝑈 ) 𝑡 ) ) |
| 39 | 7 | ffund | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 40 | 7 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ 𝐵 ) |
| 41 | 40 26 | sseqtrd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) |
| 42 | 14 15 17 21 24 38 39 41 | gsummgmpropd | ⊢ ( 𝜑 → ( ( 𝑆 ↾s 𝐵 ) Σg 𝐹 ) = ( 𝑈 Σg 𝐹 ) ) |
| 43 | 13 42 | eqtrd | ⊢ ( 𝜑 → ( 𝑆 Σg 𝐹 ) = ( 𝑈 Σg 𝐹 ) ) |