This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluate a group sum in a submonoid. (Contributed by Mario Carneiro, 19-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsubm.a | |- ( ph -> A e. V ) |
|
| gsumsubm.s | |- ( ph -> S e. ( SubMnd ` G ) ) |
||
| gsumsubm.f | |- ( ph -> F : A --> S ) |
||
| gsumsubm.h | |- H = ( G |`s S ) |
||
| Assertion | gsumsubm | |- ( ph -> ( G gsum F ) = ( H gsum F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsubm.a | |- ( ph -> A e. V ) |
|
| 2 | gsumsubm.s | |- ( ph -> S e. ( SubMnd ` G ) ) |
|
| 3 | gsumsubm.f | |- ( ph -> F : A --> S ) |
|
| 4 | gsumsubm.h | |- H = ( G |`s S ) |
|
| 5 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 6 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 7 | submrcl | |- ( S e. ( SubMnd ` G ) -> G e. Mnd ) |
|
| 8 | 2 7 | syl | |- ( ph -> G e. Mnd ) |
| 9 | 5 | submss | |- ( S e. ( SubMnd ` G ) -> S C_ ( Base ` G ) ) |
| 10 | 2 9 | syl | |- ( ph -> S C_ ( Base ` G ) ) |
| 11 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 12 | 11 | subm0cl | |- ( S e. ( SubMnd ` G ) -> ( 0g ` G ) e. S ) |
| 13 | 2 12 | syl | |- ( ph -> ( 0g ` G ) e. S ) |
| 14 | 5 6 11 | mndlrid | |- ( ( G e. Mnd /\ x e. ( Base ` G ) ) -> ( ( ( 0g ` G ) ( +g ` G ) x ) = x /\ ( x ( +g ` G ) ( 0g ` G ) ) = x ) ) |
| 15 | 8 14 | sylan | |- ( ( ph /\ x e. ( Base ` G ) ) -> ( ( ( 0g ` G ) ( +g ` G ) x ) = x /\ ( x ( +g ` G ) ( 0g ` G ) ) = x ) ) |
| 16 | 5 6 4 8 1 10 3 13 15 | gsumress | |- ( ph -> ( G gsum F ) = ( H gsum F ) ) |