This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equalizer of two group homomorphisms is a subgroup. (Contributed by Stefan O'Rear, 7-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ghmeql | |- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> dom ( F i^i G ) e. ( SubGrp ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmmhm | |- ( F e. ( S GrpHom T ) -> F e. ( S MndHom T ) ) |
|
| 2 | ghmmhm | |- ( G e. ( S GrpHom T ) -> G e. ( S MndHom T ) ) |
|
| 3 | mhmeql | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> dom ( F i^i G ) e. ( SubMnd ` S ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> dom ( F i^i G ) e. ( SubMnd ` S ) ) |
| 5 | fveq2 | |- ( y = ( ( invg ` S ) ` x ) -> ( F ` y ) = ( F ` ( ( invg ` S ) ` x ) ) ) |
|
| 6 | fveq2 | |- ( y = ( ( invg ` S ) ` x ) -> ( G ` y ) = ( G ` ( ( invg ` S ) ` x ) ) ) |
|
| 7 | 5 6 | eqeq12d | |- ( y = ( ( invg ` S ) ` x ) -> ( ( F ` y ) = ( G ` y ) <-> ( F ` ( ( invg ` S ) ` x ) ) = ( G ` ( ( invg ` S ) ` x ) ) ) ) |
| 8 | ghmgrp1 | |- ( F e. ( S GrpHom T ) -> S e. Grp ) |
|
| 9 | 8 | adantr | |- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> S e. Grp ) |
| 10 | 9 | adantr | |- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> S e. Grp ) |
| 11 | simprl | |- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> x e. ( Base ` S ) ) |
|
| 12 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 13 | eqid | |- ( invg ` S ) = ( invg ` S ) |
|
| 14 | 12 13 | grpinvcl | |- ( ( S e. Grp /\ x e. ( Base ` S ) ) -> ( ( invg ` S ) ` x ) e. ( Base ` S ) ) |
| 15 | 10 11 14 | syl2anc | |- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( ( invg ` S ) ` x ) e. ( Base ` S ) ) |
| 16 | simprr | |- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( F ` x ) = ( G ` x ) ) |
|
| 17 | 16 | fveq2d | |- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( ( invg ` T ) ` ( F ` x ) ) = ( ( invg ` T ) ` ( G ` x ) ) ) |
| 18 | eqid | |- ( invg ` T ) = ( invg ` T ) |
|
| 19 | 12 13 18 | ghminv | |- ( ( F e. ( S GrpHom T ) /\ x e. ( Base ` S ) ) -> ( F ` ( ( invg ` S ) ` x ) ) = ( ( invg ` T ) ` ( F ` x ) ) ) |
| 20 | 19 | ad2ant2r | |- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( F ` ( ( invg ` S ) ` x ) ) = ( ( invg ` T ) ` ( F ` x ) ) ) |
| 21 | 12 13 18 | ghminv | |- ( ( G e. ( S GrpHom T ) /\ x e. ( Base ` S ) ) -> ( G ` ( ( invg ` S ) ` x ) ) = ( ( invg ` T ) ` ( G ` x ) ) ) |
| 22 | 21 | ad2ant2lr | |- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( G ` ( ( invg ` S ) ` x ) ) = ( ( invg ` T ) ` ( G ` x ) ) ) |
| 23 | 17 20 22 | 3eqtr4d | |- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( F ` ( ( invg ` S ) ` x ) ) = ( G ` ( ( invg ` S ) ` x ) ) ) |
| 24 | 7 15 23 | elrabd | |- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) |
| 25 | 24 | expr | |- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ x e. ( Base ` S ) ) -> ( ( F ` x ) = ( G ` x ) -> ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) |
| 26 | 25 | ralrimiva | |- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> A. x e. ( Base ` S ) ( ( F ` x ) = ( G ` x ) -> ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) |
| 27 | fveq2 | |- ( y = x -> ( F ` y ) = ( F ` x ) ) |
|
| 28 | fveq2 | |- ( y = x -> ( G ` y ) = ( G ` x ) ) |
|
| 29 | 27 28 | eqeq12d | |- ( y = x -> ( ( F ` y ) = ( G ` y ) <-> ( F ` x ) = ( G ` x ) ) ) |
| 30 | 29 | ralrab | |- ( A. x e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } <-> A. x e. ( Base ` S ) ( ( F ` x ) = ( G ` x ) -> ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) |
| 31 | 26 30 | sylibr | |- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> A. x e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) |
| 32 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 33 | 12 32 | ghmf | |- ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 34 | 33 | adantr | |- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 35 | 34 | ffnd | |- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> F Fn ( Base ` S ) ) |
| 36 | 12 32 | ghmf | |- ( G e. ( S GrpHom T ) -> G : ( Base ` S ) --> ( Base ` T ) ) |
| 37 | 36 | adantl | |- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> G : ( Base ` S ) --> ( Base ` T ) ) |
| 38 | 37 | ffnd | |- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> G Fn ( Base ` S ) ) |
| 39 | fndmin | |- ( ( F Fn ( Base ` S ) /\ G Fn ( Base ` S ) ) -> dom ( F i^i G ) = { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) |
|
| 40 | 35 38 39 | syl2anc | |- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> dom ( F i^i G ) = { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) |
| 41 | eleq2 | |- ( dom ( F i^i G ) = { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } -> ( ( ( invg ` S ) ` x ) e. dom ( F i^i G ) <-> ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) |
|
| 42 | 41 | raleqbi1dv | |- ( dom ( F i^i G ) = { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } -> ( A. x e. dom ( F i^i G ) ( ( invg ` S ) ` x ) e. dom ( F i^i G ) <-> A. x e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) |
| 43 | 40 42 | syl | |- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> ( A. x e. dom ( F i^i G ) ( ( invg ` S ) ` x ) e. dom ( F i^i G ) <-> A. x e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) |
| 44 | 31 43 | mpbird | |- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> A. x e. dom ( F i^i G ) ( ( invg ` S ) ` x ) e. dom ( F i^i G ) ) |
| 45 | 13 | issubg3 | |- ( S e. Grp -> ( dom ( F i^i G ) e. ( SubGrp ` S ) <-> ( dom ( F i^i G ) e. ( SubMnd ` S ) /\ A. x e. dom ( F i^i G ) ( ( invg ` S ) ` x ) e. dom ( F i^i G ) ) ) ) |
| 46 | 9 45 | syl | |- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> ( dom ( F i^i G ) e. ( SubGrp ` S ) <-> ( dom ( F i^i G ) e. ( SubMnd ` S ) /\ A. x e. dom ( F i^i G ) ( ( invg ` S ) ` x ) e. dom ( F i^i G ) ) ) ) |
| 47 | 4 44 46 | mpbir2and | |- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> dom ( F i^i G ) e. ( SubGrp ` S ) ) |