This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a normal subgroup under a surjective homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ghmnsgima.1 | |- Y = ( Base ` T ) |
|
| Assertion | ghmnsgima | |- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( F " U ) e. ( NrmSGrp ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmnsgima.1 | |- Y = ( Base ` T ) |
|
| 2 | simp1 | |- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> F e. ( S GrpHom T ) ) |
|
| 3 | nsgsubg | |- ( U e. ( NrmSGrp ` S ) -> U e. ( SubGrp ` S ) ) |
|
| 4 | 3 | 3ad2ant2 | |- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> U e. ( SubGrp ` S ) ) |
| 5 | ghmima | |- ( ( F e. ( S GrpHom T ) /\ U e. ( SubGrp ` S ) ) -> ( F " U ) e. ( SubGrp ` T ) ) |
|
| 6 | 2 4 5 | syl2anc | |- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( F " U ) e. ( SubGrp ` T ) ) |
| 7 | 2 | adantr | |- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> F e. ( S GrpHom T ) ) |
| 8 | ghmgrp1 | |- ( F e. ( S GrpHom T ) -> S e. Grp ) |
|
| 9 | 7 8 | syl | |- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> S e. Grp ) |
| 10 | simprl | |- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> z e. ( Base ` S ) ) |
|
| 11 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 12 | 11 | subgss | |- ( U e. ( SubGrp ` S ) -> U C_ ( Base ` S ) ) |
| 13 | 4 12 | syl | |- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> U C_ ( Base ` S ) ) |
| 14 | 13 | adantr | |- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> U C_ ( Base ` S ) ) |
| 15 | simprr | |- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> x e. U ) |
|
| 16 | 14 15 | sseldd | |- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> x e. ( Base ` S ) ) |
| 17 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 18 | 11 17 | grpcl | |- ( ( S e. Grp /\ z e. ( Base ` S ) /\ x e. ( Base ` S ) ) -> ( z ( +g ` S ) x ) e. ( Base ` S ) ) |
| 19 | 9 10 16 18 | syl3anc | |- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( z ( +g ` S ) x ) e. ( Base ` S ) ) |
| 20 | eqid | |- ( -g ` S ) = ( -g ` S ) |
|
| 21 | eqid | |- ( -g ` T ) = ( -g ` T ) |
|
| 22 | 11 20 21 | ghmsub | |- ( ( F e. ( S GrpHom T ) /\ ( z ( +g ` S ) x ) e. ( Base ` S ) /\ z e. ( Base ` S ) ) -> ( F ` ( ( z ( +g ` S ) x ) ( -g ` S ) z ) ) = ( ( F ` ( z ( +g ` S ) x ) ) ( -g ` T ) ( F ` z ) ) ) |
| 23 | 7 19 10 22 | syl3anc | |- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( F ` ( ( z ( +g ` S ) x ) ( -g ` S ) z ) ) = ( ( F ` ( z ( +g ` S ) x ) ) ( -g ` T ) ( F ` z ) ) ) |
| 24 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 25 | 11 17 24 | ghmlin | |- ( ( F e. ( S GrpHom T ) /\ z e. ( Base ` S ) /\ x e. ( Base ` S ) ) -> ( F ` ( z ( +g ` S ) x ) ) = ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ) |
| 26 | 7 10 16 25 | syl3anc | |- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( F ` ( z ( +g ` S ) x ) ) = ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ) |
| 27 | 26 | oveq1d | |- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( ( F ` ( z ( +g ` S ) x ) ) ( -g ` T ) ( F ` z ) ) = ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) ) |
| 28 | 23 27 | eqtrd | |- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( F ` ( ( z ( +g ` S ) x ) ( -g ` S ) z ) ) = ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) ) |
| 29 | 11 1 | ghmf | |- ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> Y ) |
| 30 | 2 29 | syl | |- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> F : ( Base ` S ) --> Y ) |
| 31 | 30 | adantr | |- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> F : ( Base ` S ) --> Y ) |
| 32 | 31 | ffnd | |- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> F Fn ( Base ` S ) ) |
| 33 | simpl2 | |- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> U e. ( NrmSGrp ` S ) ) |
|
| 34 | 11 17 20 | nsgconj | |- ( ( U e. ( NrmSGrp ` S ) /\ z e. ( Base ` S ) /\ x e. U ) -> ( ( z ( +g ` S ) x ) ( -g ` S ) z ) e. U ) |
| 35 | 33 10 15 34 | syl3anc | |- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( ( z ( +g ` S ) x ) ( -g ` S ) z ) e. U ) |
| 36 | fnfvima | |- ( ( F Fn ( Base ` S ) /\ U C_ ( Base ` S ) /\ ( ( z ( +g ` S ) x ) ( -g ` S ) z ) e. U ) -> ( F ` ( ( z ( +g ` S ) x ) ( -g ` S ) z ) ) e. ( F " U ) ) |
|
| 37 | 32 14 35 36 | syl3anc | |- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( F ` ( ( z ( +g ` S ) x ) ( -g ` S ) z ) ) e. ( F " U ) ) |
| 38 | 28 37 | eqeltrrd | |- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) |
| 39 | 38 | ralrimivva | |- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> A. z e. ( Base ` S ) A. x e. U ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) |
| 40 | 30 | ffnd | |- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> F Fn ( Base ` S ) ) |
| 41 | oveq1 | |- ( x = ( F ` z ) -> ( x ( +g ` T ) y ) = ( ( F ` z ) ( +g ` T ) y ) ) |
|
| 42 | id | |- ( x = ( F ` z ) -> x = ( F ` z ) ) |
|
| 43 | 41 42 | oveq12d | |- ( x = ( F ` z ) -> ( ( x ( +g ` T ) y ) ( -g ` T ) x ) = ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) ) |
| 44 | 43 | eleq1d | |- ( x = ( F ` z ) -> ( ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
| 45 | 44 | ralbidv | |- ( x = ( F ` z ) -> ( A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
| 46 | 45 | ralrn | |- ( F Fn ( Base ` S ) -> ( A. x e. ran F A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> A. z e. ( Base ` S ) A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
| 47 | 40 46 | syl | |- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( A. x e. ran F A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> A. z e. ( Base ` S ) A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
| 48 | simp3 | |- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ran F = Y ) |
|
| 49 | 48 | raleqdv | |- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( A. x e. ran F A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> A. x e. Y A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) ) ) |
| 50 | oveq2 | |- ( y = ( F ` x ) -> ( ( F ` z ) ( +g ` T ) y ) = ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ) |
|
| 51 | 50 | oveq1d | |- ( y = ( F ` x ) -> ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) = ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) ) |
| 52 | 51 | eleq1d | |- ( y = ( F ` x ) -> ( ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) <-> ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
| 53 | 52 | ralima | |- ( ( F Fn ( Base ` S ) /\ U C_ ( Base ` S ) ) -> ( A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) <-> A. x e. U ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
| 54 | 40 13 53 | syl2anc | |- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) <-> A. x e. U ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
| 55 | 54 | ralbidv | |- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( A. z e. ( Base ` S ) A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) <-> A. z e. ( Base ` S ) A. x e. U ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
| 56 | 47 49 55 | 3bitr3d | |- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( A. x e. Y A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> A. z e. ( Base ` S ) A. x e. U ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
| 57 | 39 56 | mpbird | |- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> A. x e. Y A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) ) |
| 58 | 1 24 21 | isnsg3 | |- ( ( F " U ) e. ( NrmSGrp ` T ) <-> ( ( F " U ) e. ( SubGrp ` T ) /\ A. x e. Y A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) ) ) |
| 59 | 6 57 58 | sylanbrc | |- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( F " U ) e. ( NrmSGrp ` T ) ) |