This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Linearity of subtraction through a group homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmsub.b | |- B = ( Base ` S ) |
|
| ghmsub.m | |- .- = ( -g ` S ) |
||
| ghmsub.n | |- N = ( -g ` T ) |
||
| Assertion | ghmsub | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( F ` ( U .- V ) ) = ( ( F ` U ) N ( F ` V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmsub.b | |- B = ( Base ` S ) |
|
| 2 | ghmsub.m | |- .- = ( -g ` S ) |
|
| 3 | ghmsub.n | |- N = ( -g ` T ) |
|
| 4 | ghmgrp1 | |- ( F e. ( S GrpHom T ) -> S e. Grp ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> S e. Grp ) |
| 6 | simp3 | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> V e. B ) |
|
| 7 | eqid | |- ( invg ` S ) = ( invg ` S ) |
|
| 8 | 1 7 | grpinvcl | |- ( ( S e. Grp /\ V e. B ) -> ( ( invg ` S ) ` V ) e. B ) |
| 9 | 5 6 8 | syl2anc | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( invg ` S ) ` V ) e. B ) |
| 10 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 11 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 12 | 1 10 11 | ghmlin | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ ( ( invg ` S ) ` V ) e. B ) -> ( F ` ( U ( +g ` S ) ( ( invg ` S ) ` V ) ) ) = ( ( F ` U ) ( +g ` T ) ( F ` ( ( invg ` S ) ` V ) ) ) ) |
| 13 | 9 12 | syld3an3 | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( F ` ( U ( +g ` S ) ( ( invg ` S ) ` V ) ) ) = ( ( F ` U ) ( +g ` T ) ( F ` ( ( invg ` S ) ` V ) ) ) ) |
| 14 | eqid | |- ( invg ` T ) = ( invg ` T ) |
|
| 15 | 1 7 14 | ghminv | |- ( ( F e. ( S GrpHom T ) /\ V e. B ) -> ( F ` ( ( invg ` S ) ` V ) ) = ( ( invg ` T ) ` ( F ` V ) ) ) |
| 16 | 15 | 3adant2 | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( F ` ( ( invg ` S ) ` V ) ) = ( ( invg ` T ) ` ( F ` V ) ) ) |
| 17 | 16 | oveq2d | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( F ` U ) ( +g ` T ) ( F ` ( ( invg ` S ) ` V ) ) ) = ( ( F ` U ) ( +g ` T ) ( ( invg ` T ) ` ( F ` V ) ) ) ) |
| 18 | 13 17 | eqtrd | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( F ` ( U ( +g ` S ) ( ( invg ` S ) ` V ) ) ) = ( ( F ` U ) ( +g ` T ) ( ( invg ` T ) ` ( F ` V ) ) ) ) |
| 19 | 1 10 7 2 | grpsubval | |- ( ( U e. B /\ V e. B ) -> ( U .- V ) = ( U ( +g ` S ) ( ( invg ` S ) ` V ) ) ) |
| 20 | 19 | fveq2d | |- ( ( U e. B /\ V e. B ) -> ( F ` ( U .- V ) ) = ( F ` ( U ( +g ` S ) ( ( invg ` S ) ` V ) ) ) ) |
| 21 | 20 | 3adant1 | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( F ` ( U .- V ) ) = ( F ` ( U ( +g ` S ) ( ( invg ` S ) ` V ) ) ) ) |
| 22 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 23 | 1 22 | ghmf | |- ( F e. ( S GrpHom T ) -> F : B --> ( Base ` T ) ) |
| 24 | ffvelcdm | |- ( ( F : B --> ( Base ` T ) /\ U e. B ) -> ( F ` U ) e. ( Base ` T ) ) |
|
| 25 | ffvelcdm | |- ( ( F : B --> ( Base ` T ) /\ V e. B ) -> ( F ` V ) e. ( Base ` T ) ) |
|
| 26 | 24 25 | anim12dan | |- ( ( F : B --> ( Base ` T ) /\ ( U e. B /\ V e. B ) ) -> ( ( F ` U ) e. ( Base ` T ) /\ ( F ` V ) e. ( Base ` T ) ) ) |
| 27 | 23 26 | sylan | |- ( ( F e. ( S GrpHom T ) /\ ( U e. B /\ V e. B ) ) -> ( ( F ` U ) e. ( Base ` T ) /\ ( F ` V ) e. ( Base ` T ) ) ) |
| 28 | 27 | 3impb | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( F ` U ) e. ( Base ` T ) /\ ( F ` V ) e. ( Base ` T ) ) ) |
| 29 | 22 11 14 3 | grpsubval | |- ( ( ( F ` U ) e. ( Base ` T ) /\ ( F ` V ) e. ( Base ` T ) ) -> ( ( F ` U ) N ( F ` V ) ) = ( ( F ` U ) ( +g ` T ) ( ( invg ` T ) ` ( F ` V ) ) ) ) |
| 30 | 28 29 | syl | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( F ` U ) N ( F ` V ) ) = ( ( F ` U ) ( +g ` T ) ( ( invg ` T ) ` ( F ` V ) ) ) ) |
| 31 | 18 21 30 | 3eqtr4d | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( F ` ( U .- V ) ) = ( ( F ` U ) N ( F ` V ) ) ) |