This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse image of a normal subgroup under a homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ghmnsgpreima | |- ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) -> ( `' F " V ) e. ( NrmSGrp ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsgsubg | |- ( V e. ( NrmSGrp ` T ) -> V e. ( SubGrp ` T ) ) |
|
| 2 | ghmpreima | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( `' F " V ) e. ( SubGrp ` S ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) -> ( `' F " V ) e. ( SubGrp ` S ) ) |
| 4 | ghmgrp1 | |- ( F e. ( S GrpHom T ) -> S e. Grp ) |
|
| 5 | 4 | ad2antrr | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> S e. Grp ) |
| 6 | simprl | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> x e. ( Base ` S ) ) |
|
| 7 | simprr | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> y e. ( `' F " V ) ) |
|
| 8 | simpll | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> F e. ( S GrpHom T ) ) |
|
| 9 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 10 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 11 | 9 10 | ghmf | |- ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 12 | 8 11 | syl | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 13 | 12 | ffnd | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> F Fn ( Base ` S ) ) |
| 14 | elpreima | |- ( F Fn ( Base ` S ) -> ( y e. ( `' F " V ) <-> ( y e. ( Base ` S ) /\ ( F ` y ) e. V ) ) ) |
|
| 15 | 13 14 | syl | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> ( y e. ( `' F " V ) <-> ( y e. ( Base ` S ) /\ ( F ` y ) e. V ) ) ) |
| 16 | 7 15 | mpbid | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> ( y e. ( Base ` S ) /\ ( F ` y ) e. V ) ) |
| 17 | 16 | simpld | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> y e. ( Base ` S ) ) |
| 18 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 19 | 9 18 | grpcl | |- ( ( S e. Grp /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( x ( +g ` S ) y ) e. ( Base ` S ) ) |
| 20 | 5 6 17 19 | syl3anc | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> ( x ( +g ` S ) y ) e. ( Base ` S ) ) |
| 21 | eqid | |- ( -g ` S ) = ( -g ` S ) |
|
| 22 | 9 21 | grpsubcl | |- ( ( S e. Grp /\ ( x ( +g ` S ) y ) e. ( Base ` S ) /\ x e. ( Base ` S ) ) -> ( ( x ( +g ` S ) y ) ( -g ` S ) x ) e. ( Base ` S ) ) |
| 23 | 5 20 6 22 | syl3anc | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> ( ( x ( +g ` S ) y ) ( -g ` S ) x ) e. ( Base ` S ) ) |
| 24 | eqid | |- ( -g ` T ) = ( -g ` T ) |
|
| 25 | 9 21 24 | ghmsub | |- ( ( F e. ( S GrpHom T ) /\ ( x ( +g ` S ) y ) e. ( Base ` S ) /\ x e. ( Base ` S ) ) -> ( F ` ( ( x ( +g ` S ) y ) ( -g ` S ) x ) ) = ( ( F ` ( x ( +g ` S ) y ) ) ( -g ` T ) ( F ` x ) ) ) |
| 26 | 8 20 6 25 | syl3anc | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> ( F ` ( ( x ( +g ` S ) y ) ( -g ` S ) x ) ) = ( ( F ` ( x ( +g ` S ) y ) ) ( -g ` T ) ( F ` x ) ) ) |
| 27 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 28 | 9 18 27 | ghmlin | |- ( ( F e. ( S GrpHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 29 | 8 6 17 28 | syl3anc | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 30 | 29 | oveq1d | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> ( ( F ` ( x ( +g ` S ) y ) ) ( -g ` T ) ( F ` x ) ) = ( ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ( -g ` T ) ( F ` x ) ) ) |
| 31 | 26 30 | eqtrd | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> ( F ` ( ( x ( +g ` S ) y ) ( -g ` S ) x ) ) = ( ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ( -g ` T ) ( F ` x ) ) ) |
| 32 | simplr | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> V e. ( NrmSGrp ` T ) ) |
|
| 33 | 12 6 | ffvelcdmd | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> ( F ` x ) e. ( Base ` T ) ) |
| 34 | 16 | simprd | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> ( F ` y ) e. V ) |
| 35 | 10 27 24 | nsgconj | |- ( ( V e. ( NrmSGrp ` T ) /\ ( F ` x ) e. ( Base ` T ) /\ ( F ` y ) e. V ) -> ( ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ( -g ` T ) ( F ` x ) ) e. V ) |
| 36 | 32 33 34 35 | syl3anc | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> ( ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ( -g ` T ) ( F ` x ) ) e. V ) |
| 37 | 31 36 | eqeltrd | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> ( F ` ( ( x ( +g ` S ) y ) ( -g ` S ) x ) ) e. V ) |
| 38 | elpreima | |- ( F Fn ( Base ` S ) -> ( ( ( x ( +g ` S ) y ) ( -g ` S ) x ) e. ( `' F " V ) <-> ( ( ( x ( +g ` S ) y ) ( -g ` S ) x ) e. ( Base ` S ) /\ ( F ` ( ( x ( +g ` S ) y ) ( -g ` S ) x ) ) e. V ) ) ) |
|
| 39 | 13 38 | syl | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> ( ( ( x ( +g ` S ) y ) ( -g ` S ) x ) e. ( `' F " V ) <-> ( ( ( x ( +g ` S ) y ) ( -g ` S ) x ) e. ( Base ` S ) /\ ( F ` ( ( x ( +g ` S ) y ) ( -g ` S ) x ) ) e. V ) ) ) |
| 40 | 23 37 39 | mpbir2and | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( `' F " V ) ) ) -> ( ( x ( +g ` S ) y ) ( -g ` S ) x ) e. ( `' F " V ) ) |
| 41 | 40 | ralrimivva | |- ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) -> A. x e. ( Base ` S ) A. y e. ( `' F " V ) ( ( x ( +g ` S ) y ) ( -g ` S ) x ) e. ( `' F " V ) ) |
| 42 | 9 18 21 | isnsg3 | |- ( ( `' F " V ) e. ( NrmSGrp ` S ) <-> ( ( `' F " V ) e. ( SubGrp ` S ) /\ A. x e. ( Base ` S ) A. y e. ( `' F " V ) ( ( x ( +g ` S ) y ) ( -g ` S ) x ) e. ( `' F " V ) ) ) |
| 43 | 3 41 42 | sylanbrc | |- ( ( F e. ( S GrpHom T ) /\ V e. ( NrmSGrp ` T ) ) -> ( `' F " V ) e. ( NrmSGrp ` S ) ) |