This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnsg3.1 | |- X = ( Base ` G ) |
|
| isnsg3.2 | |- .+ = ( +g ` G ) |
||
| isnsg3.3 | |- .- = ( -g ` G ) |
||
| Assertion | nsgconj | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X /\ B e. S ) -> ( ( A .+ B ) .- A ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnsg3.1 | |- X = ( Base ` G ) |
|
| 2 | isnsg3.2 | |- .+ = ( +g ` G ) |
|
| 3 | isnsg3.3 | |- .- = ( -g ` G ) |
|
| 4 | nsgsubg | |- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X /\ B e. S ) -> S e. ( SubGrp ` G ) ) |
| 6 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 7 | 5 6 | syl | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X /\ B e. S ) -> G e. Grp ) |
| 8 | simp2 | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X /\ B e. S ) -> A e. X ) |
|
| 9 | 1 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ X ) |
| 10 | 5 9 | syl | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X /\ B e. S ) -> S C_ X ) |
| 11 | simp3 | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X /\ B e. S ) -> B e. S ) |
|
| 12 | 10 11 | sseldd | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X /\ B e. S ) -> B e. X ) |
| 13 | 1 2 3 | grpaddsubass | |- ( ( G e. Grp /\ ( A e. X /\ B e. X /\ A e. X ) ) -> ( ( A .+ B ) .- A ) = ( A .+ ( B .- A ) ) ) |
| 14 | 7 8 12 8 13 | syl13anc | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X /\ B e. S ) -> ( ( A .+ B ) .- A ) = ( A .+ ( B .- A ) ) ) |
| 15 | 1 2 3 | grpnpcan | |- ( ( G e. Grp /\ B e. X /\ A e. X ) -> ( ( B .- A ) .+ A ) = B ) |
| 16 | 7 12 8 15 | syl3anc | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X /\ B e. S ) -> ( ( B .- A ) .+ A ) = B ) |
| 17 | 16 11 | eqeltrd | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X /\ B e. S ) -> ( ( B .- A ) .+ A ) e. S ) |
| 18 | simp1 | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X /\ B e. S ) -> S e. ( NrmSGrp ` G ) ) |
|
| 19 | 1 3 | grpsubcl | |- ( ( G e. Grp /\ B e. X /\ A e. X ) -> ( B .- A ) e. X ) |
| 20 | 7 12 8 19 | syl3anc | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X /\ B e. S ) -> ( B .- A ) e. X ) |
| 21 | 1 2 | nsgbi | |- ( ( S e. ( NrmSGrp ` G ) /\ ( B .- A ) e. X /\ A e. X ) -> ( ( ( B .- A ) .+ A ) e. S <-> ( A .+ ( B .- A ) ) e. S ) ) |
| 22 | 18 20 8 21 | syl3anc | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X /\ B e. S ) -> ( ( ( B .- A ) .+ A ) e. S <-> ( A .+ ( B .- A ) ) e. S ) ) |
| 23 | 17 22 | mpbid | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X /\ B e. S ) -> ( A .+ ( B .- A ) ) e. S ) |
| 24 | 14 23 | eqeltrd | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X /\ B e. S ) -> ( ( A .+ B ) .- A ) e. S ) |