This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a normal subgroup under a surjective homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ghmnsgima.1 | ⊢ 𝑌 = ( Base ‘ 𝑇 ) | |
| Assertion | ghmnsgima | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ( 𝐹 “ 𝑈 ) ∈ ( NrmSGrp ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmnsgima.1 | ⊢ 𝑌 = ( Base ‘ 𝑇 ) | |
| 2 | simp1 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 3 | nsgsubg | ⊢ ( 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ) | |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ) |
| 5 | ghmima | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ) → ( 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑇 ) ) | |
| 6 | 2 4 5 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ( 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑇 ) ) |
| 7 | 2 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 8 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝑆 ∈ Grp ) |
| 10 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝑧 ∈ ( Base ‘ 𝑆 ) ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 12 | 11 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝑆 ) ) |
| 13 | 4 12 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → 𝑈 ⊆ ( Base ‘ 𝑆 ) ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝑈 ⊆ ( Base ‘ 𝑆 ) ) |
| 15 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝑥 ∈ 𝑈 ) | |
| 16 | 14 15 | sseldd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 17 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 18 | 11 17 | grpcl | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 19 | 9 10 16 18 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 20 | eqid | ⊢ ( -g ‘ 𝑆 ) = ( -g ‘ 𝑆 ) | |
| 21 | eqid | ⊢ ( -g ‘ 𝑇 ) = ( -g ‘ 𝑇 ) | |
| 22 | 11 20 21 | ghmsub | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 23 | 7 19 10 22 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 24 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 25 | 11 17 24 | ghmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 26 | 7 10 16 25 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 27 | 26 | oveq1d | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → ( ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 28 | 23 27 | eqtrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 29 | 11 1 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑌 ) |
| 30 | 2 29 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑌 ) |
| 31 | 30 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑌 ) |
| 32 | 31 | ffnd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
| 33 | simpl2 | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ) | |
| 34 | 11 17 20 | nsgconj | ⊢ ( ( 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) → ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) ∈ 𝑈 ) |
| 35 | 33 10 15 34 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) ∈ 𝑈 ) |
| 36 | fnfvima | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝑆 ) ∧ 𝑈 ⊆ ( Base ‘ 𝑆 ) ∧ ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) ∈ 𝑈 ) → ( 𝐹 ‘ ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) | |
| 37 | 32 14 35 36 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) |
| 38 | 28 37 | eqeltrrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) |
| 39 | 38 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ∀ 𝑧 ∈ ( Base ‘ 𝑆 ) ∀ 𝑥 ∈ 𝑈 ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) |
| 40 | 30 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
| 41 | oveq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ) | |
| 42 | id | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → 𝑥 = ( 𝐹 ‘ 𝑧 ) ) | |
| 43 | 41 42 | oveq12d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) = ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 44 | 43 | eleq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ↔ ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 45 | 44 | ralbidv | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 46 | 45 | ralrn | ⊢ ( 𝐹 Fn ( Base ‘ 𝑆 ) → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 47 | 40 46 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 48 | simp3 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ran 𝐹 = 𝑌 ) | |
| 49 | 48 | raleqdv | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 50 | oveq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) | |
| 51 | 50 | oveq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 52 | 51 | eleq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ↔ ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 53 | 52 | ralima | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝑆 ) ∧ 𝑈 ⊆ ( Base ‘ 𝑆 ) ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑥 ∈ 𝑈 ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 54 | 40 13 53 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑥 ∈ 𝑈 ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 55 | 54 | ralbidv | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝑆 ) ∀ 𝑥 ∈ 𝑈 ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 56 | 47 49 55 | 3bitr3d | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ( ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝑆 ) ∀ 𝑥 ∈ 𝑈 ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 57 | 39 56 | mpbird | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ) |
| 58 | 1 24 21 | isnsg3 | ⊢ ( ( 𝐹 “ 𝑈 ) ∈ ( NrmSGrp ‘ 𝑇 ) ↔ ( ( 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 59 | 6 57 58 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ( 𝐹 “ 𝑈 ) ∈ ( NrmSGrp ‘ 𝑇 ) ) |