This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the infinite geometric series 2 ^ -u 1 + 2 ^ -u 2 + ... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | geo2lim.1 | |- F = ( k e. NN |-> ( A / ( 2 ^ k ) ) ) |
|
| Assertion | geo2lim | |- ( A e. CC -> seq 1 ( + , F ) ~~> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | geo2lim.1 | |- F = ( k e. NN |-> ( A / ( 2 ^ k ) ) ) |
|
| 2 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 3 | 1zzd | |- ( A e. CC -> 1 e. ZZ ) |
|
| 4 | halfcn | |- ( 1 / 2 ) e. CC |
|
| 5 | 4 | a1i | |- ( A e. CC -> ( 1 / 2 ) e. CC ) |
| 6 | halfre | |- ( 1 / 2 ) e. RR |
|
| 7 | halfge0 | |- 0 <_ ( 1 / 2 ) |
|
| 8 | absid | |- ( ( ( 1 / 2 ) e. RR /\ 0 <_ ( 1 / 2 ) ) -> ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) ) |
|
| 9 | 6 7 8 | mp2an | |- ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) |
| 10 | halflt1 | |- ( 1 / 2 ) < 1 |
|
| 11 | 9 10 | eqbrtri | |- ( abs ` ( 1 / 2 ) ) < 1 |
| 12 | 11 | a1i | |- ( A e. CC -> ( abs ` ( 1 / 2 ) ) < 1 ) |
| 13 | 5 12 | expcnv | |- ( A e. CC -> ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ~~> 0 ) |
| 14 | id | |- ( A e. CC -> A e. CC ) |
|
| 15 | nnex | |- NN e. _V |
|
| 16 | 15 | mptex | |- ( k e. NN |-> ( A / ( 2 ^ k ) ) ) e. _V |
| 17 | 1 16 | eqeltri | |- F e. _V |
| 18 | 17 | a1i | |- ( A e. CC -> F e. _V ) |
| 19 | nnnn0 | |- ( j e. NN -> j e. NN0 ) |
|
| 20 | 19 | adantl | |- ( ( A e. CC /\ j e. NN ) -> j e. NN0 ) |
| 21 | oveq2 | |- ( k = j -> ( ( 1 / 2 ) ^ k ) = ( ( 1 / 2 ) ^ j ) ) |
|
| 22 | eqid | |- ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) = ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) |
|
| 23 | ovex | |- ( ( 1 / 2 ) ^ j ) e. _V |
|
| 24 | 21 22 23 | fvmpt | |- ( j e. NN0 -> ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) = ( ( 1 / 2 ) ^ j ) ) |
| 25 | 20 24 | syl | |- ( ( A e. CC /\ j e. NN ) -> ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) = ( ( 1 / 2 ) ^ j ) ) |
| 26 | 2cn | |- 2 e. CC |
|
| 27 | 2ne0 | |- 2 =/= 0 |
|
| 28 | nnz | |- ( j e. NN -> j e. ZZ ) |
|
| 29 | 28 | adantl | |- ( ( A e. CC /\ j e. NN ) -> j e. ZZ ) |
| 30 | exprec | |- ( ( 2 e. CC /\ 2 =/= 0 /\ j e. ZZ ) -> ( ( 1 / 2 ) ^ j ) = ( 1 / ( 2 ^ j ) ) ) |
|
| 31 | 26 27 29 30 | mp3an12i | |- ( ( A e. CC /\ j e. NN ) -> ( ( 1 / 2 ) ^ j ) = ( 1 / ( 2 ^ j ) ) ) |
| 32 | 25 31 | eqtrd | |- ( ( A e. CC /\ j e. NN ) -> ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) = ( 1 / ( 2 ^ j ) ) ) |
| 33 | 2nn | |- 2 e. NN |
|
| 34 | nnexpcl | |- ( ( 2 e. NN /\ j e. NN0 ) -> ( 2 ^ j ) e. NN ) |
|
| 35 | 33 20 34 | sylancr | |- ( ( A e. CC /\ j e. NN ) -> ( 2 ^ j ) e. NN ) |
| 36 | 35 | nnrecred | |- ( ( A e. CC /\ j e. NN ) -> ( 1 / ( 2 ^ j ) ) e. RR ) |
| 37 | 36 | recnd | |- ( ( A e. CC /\ j e. NN ) -> ( 1 / ( 2 ^ j ) ) e. CC ) |
| 38 | 32 37 | eqeltrd | |- ( ( A e. CC /\ j e. NN ) -> ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) e. CC ) |
| 39 | simpl | |- ( ( A e. CC /\ j e. NN ) -> A e. CC ) |
|
| 40 | 35 | nncnd | |- ( ( A e. CC /\ j e. NN ) -> ( 2 ^ j ) e. CC ) |
| 41 | 35 | nnne0d | |- ( ( A e. CC /\ j e. NN ) -> ( 2 ^ j ) =/= 0 ) |
| 42 | 39 40 41 | divrecd | |- ( ( A e. CC /\ j e. NN ) -> ( A / ( 2 ^ j ) ) = ( A x. ( 1 / ( 2 ^ j ) ) ) ) |
| 43 | oveq2 | |- ( k = j -> ( 2 ^ k ) = ( 2 ^ j ) ) |
|
| 44 | 43 | oveq2d | |- ( k = j -> ( A / ( 2 ^ k ) ) = ( A / ( 2 ^ j ) ) ) |
| 45 | ovex | |- ( A / ( 2 ^ j ) ) e. _V |
|
| 46 | 44 1 45 | fvmpt | |- ( j e. NN -> ( F ` j ) = ( A / ( 2 ^ j ) ) ) |
| 47 | 46 | adantl | |- ( ( A e. CC /\ j e. NN ) -> ( F ` j ) = ( A / ( 2 ^ j ) ) ) |
| 48 | 32 | oveq2d | |- ( ( A e. CC /\ j e. NN ) -> ( A x. ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) ) = ( A x. ( 1 / ( 2 ^ j ) ) ) ) |
| 49 | 42 47 48 | 3eqtr4d | |- ( ( A e. CC /\ j e. NN ) -> ( F ` j ) = ( A x. ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) ) ) |
| 50 | 2 3 13 14 18 38 49 | climmulc2 | |- ( A e. CC -> F ~~> ( A x. 0 ) ) |
| 51 | mul01 | |- ( A e. CC -> ( A x. 0 ) = 0 ) |
|
| 52 | 50 51 | breqtrd | |- ( A e. CC -> F ~~> 0 ) |
| 53 | seqex | |- seq 1 ( + , F ) e. _V |
|
| 54 | 53 | a1i | |- ( A e. CC -> seq 1 ( + , F ) e. _V ) |
| 55 | 39 40 41 | divcld | |- ( ( A e. CC /\ j e. NN ) -> ( A / ( 2 ^ j ) ) e. CC ) |
| 56 | 47 55 | eqeltrd | |- ( ( A e. CC /\ j e. NN ) -> ( F ` j ) e. CC ) |
| 57 | 47 | oveq2d | |- ( ( A e. CC /\ j e. NN ) -> ( A - ( F ` j ) ) = ( A - ( A / ( 2 ^ j ) ) ) ) |
| 58 | geo2sum | |- ( ( j e. NN /\ A e. CC ) -> sum_ n e. ( 1 ... j ) ( A / ( 2 ^ n ) ) = ( A - ( A / ( 2 ^ j ) ) ) ) |
|
| 59 | 58 | ancoms | |- ( ( A e. CC /\ j e. NN ) -> sum_ n e. ( 1 ... j ) ( A / ( 2 ^ n ) ) = ( A - ( A / ( 2 ^ j ) ) ) ) |
| 60 | elfznn | |- ( n e. ( 1 ... j ) -> n e. NN ) |
|
| 61 | 60 | adantl | |- ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> n e. NN ) |
| 62 | oveq2 | |- ( k = n -> ( 2 ^ k ) = ( 2 ^ n ) ) |
|
| 63 | 62 | oveq2d | |- ( k = n -> ( A / ( 2 ^ k ) ) = ( A / ( 2 ^ n ) ) ) |
| 64 | ovex | |- ( A / ( 2 ^ n ) ) e. _V |
|
| 65 | 63 1 64 | fvmpt | |- ( n e. NN -> ( F ` n ) = ( A / ( 2 ^ n ) ) ) |
| 66 | 61 65 | syl | |- ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( F ` n ) = ( A / ( 2 ^ n ) ) ) |
| 67 | simpr | |- ( ( A e. CC /\ j e. NN ) -> j e. NN ) |
|
| 68 | 67 2 | eleqtrdi | |- ( ( A e. CC /\ j e. NN ) -> j e. ( ZZ>= ` 1 ) ) |
| 69 | simpll | |- ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> A e. CC ) |
|
| 70 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 71 | nnexpcl | |- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
|
| 72 | 33 70 71 | sylancr | |- ( n e. NN -> ( 2 ^ n ) e. NN ) |
| 73 | 61 72 | syl | |- ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 ^ n ) e. NN ) |
| 74 | 73 | nncnd | |- ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 ^ n ) e. CC ) |
| 75 | 73 | nnne0d | |- ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 ^ n ) =/= 0 ) |
| 76 | 69 74 75 | divcld | |- ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( A / ( 2 ^ n ) ) e. CC ) |
| 77 | 66 68 76 | fsumser | |- ( ( A e. CC /\ j e. NN ) -> sum_ n e. ( 1 ... j ) ( A / ( 2 ^ n ) ) = ( seq 1 ( + , F ) ` j ) ) |
| 78 | 57 59 77 | 3eqtr2rd | |- ( ( A e. CC /\ j e. NN ) -> ( seq 1 ( + , F ) ` j ) = ( A - ( F ` j ) ) ) |
| 79 | 2 3 52 14 54 56 78 | climsubc2 | |- ( A e. CC -> seq 1 ( + , F ) ~~> ( A - 0 ) ) |
| 80 | subid1 | |- ( A e. CC -> ( A - 0 ) = A ) |
|
| 81 | 79 80 | breqtrd | |- ( A e. CC -> seq 1 ( + , F ) ~~> A ) |