This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the infinite geometric series 2 ^ -u 1 + 2 ^ -u 2 + ... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | geo2lim.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑘 ) ) ) | |
| Assertion | geo2lim | ⊢ ( 𝐴 ∈ ℂ → seq 1 ( + , 𝐹 ) ⇝ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | geo2lim.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑘 ) ) ) | |
| 2 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 3 | 1zzd | ⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℤ ) | |
| 4 | halfcn | ⊢ ( 1 / 2 ) ∈ ℂ | |
| 5 | 4 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( 1 / 2 ) ∈ ℂ ) |
| 6 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 7 | halfge0 | ⊢ 0 ≤ ( 1 / 2 ) | |
| 8 | absid | ⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ) → ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) ) | |
| 9 | 6 7 8 | mp2an | ⊢ ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) |
| 10 | halflt1 | ⊢ ( 1 / 2 ) < 1 | |
| 11 | 9 10 | eqbrtri | ⊢ ( abs ‘ ( 1 / 2 ) ) < 1 |
| 12 | 11 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( 1 / 2 ) ) < 1 ) |
| 13 | 5 12 | expcnv | ⊢ ( 𝐴 ∈ ℂ → ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ⇝ 0 ) |
| 14 | id | ⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) | |
| 15 | nnex | ⊢ ℕ ∈ V | |
| 16 | 15 | mptex | ⊢ ( 𝑘 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑘 ) ) ) ∈ V |
| 17 | 1 16 | eqeltri | ⊢ 𝐹 ∈ V |
| 18 | 17 | a1i | ⊢ ( 𝐴 ∈ ℂ → 𝐹 ∈ V ) |
| 19 | nnnn0 | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ0 ) | |
| 20 | 19 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ0 ) |
| 21 | oveq2 | ⊢ ( 𝑘 = 𝑗 → ( ( 1 / 2 ) ↑ 𝑘 ) = ( ( 1 / 2 ) ↑ 𝑗 ) ) | |
| 22 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) | |
| 23 | ovex | ⊢ ( ( 1 / 2 ) ↑ 𝑗 ) ∈ V | |
| 24 | 21 22 23 | fvmpt | ⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) = ( ( 1 / 2 ) ↑ 𝑗 ) ) |
| 25 | 20 24 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) = ( ( 1 / 2 ) ↑ 𝑗 ) ) |
| 26 | 2cn | ⊢ 2 ∈ ℂ | |
| 27 | 2ne0 | ⊢ 2 ≠ 0 | |
| 28 | nnz | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) | |
| 29 | 28 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℤ ) |
| 30 | exprec | ⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑗 ∈ ℤ ) → ( ( 1 / 2 ) ↑ 𝑗 ) = ( 1 / ( 2 ↑ 𝑗 ) ) ) | |
| 31 | 26 27 29 30 | mp3an12i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( ( 1 / 2 ) ↑ 𝑗 ) = ( 1 / ( 2 ↑ 𝑗 ) ) ) |
| 32 | 25 31 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) = ( 1 / ( 2 ↑ 𝑗 ) ) ) |
| 33 | 2nn | ⊢ 2 ∈ ℕ | |
| 34 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ 𝑗 ) ∈ ℕ ) | |
| 35 | 33 20 34 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ℕ ) |
| 36 | 35 | nnrecred | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 1 / ( 2 ↑ 𝑗 ) ) ∈ ℝ ) |
| 37 | 36 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 1 / ( 2 ↑ 𝑗 ) ) ∈ ℂ ) |
| 38 | 32 37 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 39 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → 𝐴 ∈ ℂ ) | |
| 40 | 35 | nncnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ℂ ) |
| 41 | 35 | nnne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ≠ 0 ) |
| 42 | 39 40 41 | divrecd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐴 / ( 2 ↑ 𝑗 ) ) = ( 𝐴 · ( 1 / ( 2 ↑ 𝑗 ) ) ) ) |
| 43 | oveq2 | ⊢ ( 𝑘 = 𝑗 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 𝑗 ) ) | |
| 44 | 43 | oveq2d | ⊢ ( 𝑘 = 𝑗 → ( 𝐴 / ( 2 ↑ 𝑘 ) ) = ( 𝐴 / ( 2 ↑ 𝑗 ) ) ) |
| 45 | ovex | ⊢ ( 𝐴 / ( 2 ↑ 𝑗 ) ) ∈ V | |
| 46 | 44 1 45 | fvmpt | ⊢ ( 𝑗 ∈ ℕ → ( 𝐹 ‘ 𝑗 ) = ( 𝐴 / ( 2 ↑ 𝑗 ) ) ) |
| 47 | 46 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐴 / ( 2 ↑ 𝑗 ) ) ) |
| 48 | 32 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐴 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) ) = ( 𝐴 · ( 1 / ( 2 ↑ 𝑗 ) ) ) ) |
| 49 | 42 47 48 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐴 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) ) ) |
| 50 | 2 3 13 14 18 38 49 | climmulc2 | ⊢ ( 𝐴 ∈ ℂ → 𝐹 ⇝ ( 𝐴 · 0 ) ) |
| 51 | mul01 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 ) | |
| 52 | 50 51 | breqtrd | ⊢ ( 𝐴 ∈ ℂ → 𝐹 ⇝ 0 ) |
| 53 | seqex | ⊢ seq 1 ( + , 𝐹 ) ∈ V | |
| 54 | 53 | a1i | ⊢ ( 𝐴 ∈ ℂ → seq 1 ( + , 𝐹 ) ∈ V ) |
| 55 | 39 40 41 | divcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐴 / ( 2 ↑ 𝑗 ) ) ∈ ℂ ) |
| 56 | 47 55 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 57 | 47 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐴 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑗 ) ) ) ) |
| 58 | geo2sum | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → Σ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐴 / ( 2 ↑ 𝑛 ) ) = ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑗 ) ) ) ) | |
| 59 | 58 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → Σ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐴 / ( 2 ↑ 𝑛 ) ) = ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑗 ) ) ) ) |
| 60 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 𝑛 ∈ ℕ ) | |
| 61 | 60 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℕ ) |
| 62 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 𝑛 ) ) | |
| 63 | 62 | oveq2d | ⊢ ( 𝑘 = 𝑛 → ( 𝐴 / ( 2 ↑ 𝑘 ) ) = ( 𝐴 / ( 2 ↑ 𝑛 ) ) ) |
| 64 | ovex | ⊢ ( 𝐴 / ( 2 ↑ 𝑛 ) ) ∈ V | |
| 65 | 63 1 64 | fvmpt | ⊢ ( 𝑛 ∈ ℕ → ( 𝐹 ‘ 𝑛 ) = ( 𝐴 / ( 2 ↑ 𝑛 ) ) ) |
| 66 | 61 65 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐴 / ( 2 ↑ 𝑛 ) ) ) |
| 67 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) | |
| 68 | 67 2 | eleqtrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
| 69 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝐴 ∈ ℂ ) | |
| 70 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 71 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) | |
| 72 | 33 70 71 | sylancr | ⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 73 | 61 72 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 74 | 73 | nncnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 ↑ 𝑛 ) ∈ ℂ ) |
| 75 | 73 | nnne0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 ↑ 𝑛 ) ≠ 0 ) |
| 76 | 69 74 75 | divcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐴 / ( 2 ↑ 𝑛 ) ) ∈ ℂ ) |
| 77 | 66 68 76 | fsumser | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → Σ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐴 / ( 2 ↑ 𝑛 ) ) = ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) |
| 78 | 57 59 77 | 3eqtr2rd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) = ( 𝐴 − ( 𝐹 ‘ 𝑗 ) ) ) |
| 79 | 2 3 52 14 54 56 78 | climsubc2 | ⊢ ( 𝐴 ∈ ℂ → seq 1 ( + , 𝐹 ) ⇝ ( 𝐴 − 0 ) ) |
| 80 | subid1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − 0 ) = 𝐴 ) | |
| 81 | 79 80 | breqtrd | ⊢ ( 𝐴 ∈ ℂ → seq 1 ( + , 𝐹 ) ⇝ 𝐴 ) |