This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operation generating opposite functors is bijective. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppff1.o | |- O = ( oppCat ` C ) |
|
| oppff1.p | |- P = ( oppCat ` D ) |
||
| oppff1o.c | |- ( ph -> C e. V ) |
||
| oppff1o.d | |- ( ph -> D e. W ) |
||
| Assertion | oppff1o | |- ( ph -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-onto-> ( O Func P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppff1.o | |- O = ( oppCat ` C ) |
|
| 2 | oppff1.p | |- P = ( oppCat ` D ) |
|
| 3 | oppff1o.c | |- ( ph -> C e. V ) |
|
| 4 | oppff1o.d | |- ( ph -> D e. W ) |
|
| 5 | 1 2 | oppff1 | |- ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) |
| 6 | 5 | a1i | |- ( ph -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) ) |
| 7 | f1f | |- ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) ) |
|
| 8 | 6 7 | syl | |- ( ph -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) ) |
| 9 | fveq2 | |- ( g = ( oppFunc ` f ) -> ( ( oppFunc |` ( C Func D ) ) ` g ) = ( ( oppFunc |` ( C Func D ) ) ` ( oppFunc ` f ) ) ) |
|
| 10 | 9 | eqeq2d | |- ( g = ( oppFunc ` f ) -> ( f = ( ( oppFunc |` ( C Func D ) ) ` g ) <-> f = ( ( oppFunc |` ( C Func D ) ) ` ( oppFunc ` f ) ) ) ) |
| 11 | 3 | adantr | |- ( ( ph /\ f e. ( O Func P ) ) -> C e. V ) |
| 12 | 4 | adantr | |- ( ( ph /\ f e. ( O Func P ) ) -> D e. W ) |
| 13 | simpr | |- ( ( ph /\ f e. ( O Func P ) ) -> f e. ( O Func P ) ) |
|
| 14 | 1 2 11 12 13 | 2oppffunc | |- ( ( ph /\ f e. ( O Func P ) ) -> ( oppFunc ` f ) e. ( C Func D ) ) |
| 15 | 14 | fvresd | |- ( ( ph /\ f e. ( O Func P ) ) -> ( ( oppFunc |` ( C Func D ) ) ` ( oppFunc ` f ) ) = ( oppFunc ` ( oppFunc ` f ) ) ) |
| 16 | relfunc | |- Rel ( C Func D ) |
|
| 17 | eqid | |- ( oppFunc ` f ) = ( oppFunc ` f ) |
|
| 18 | 14 16 17 | 2oppf | |- ( ( ph /\ f e. ( O Func P ) ) -> ( oppFunc ` ( oppFunc ` f ) ) = f ) |
| 19 | 15 18 | eqtr2d | |- ( ( ph /\ f e. ( O Func P ) ) -> f = ( ( oppFunc |` ( C Func D ) ) ` ( oppFunc ` f ) ) ) |
| 20 | 10 14 19 | rspcedvdw | |- ( ( ph /\ f e. ( O Func P ) ) -> E. g e. ( C Func D ) f = ( ( oppFunc |` ( C Func D ) ) ` g ) ) |
| 21 | 20 | ralrimiva | |- ( ph -> A. f e. ( O Func P ) E. g e. ( C Func D ) f = ( ( oppFunc |` ( C Func D ) ) ` g ) ) |
| 22 | dffo3 | |- ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) -onto-> ( O Func P ) <-> ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) /\ A. f e. ( O Func P ) E. g e. ( C Func D ) f = ( ( oppFunc |` ( C Func D ) ) ` g ) ) ) |
|
| 23 | 8 21 22 | sylanbrc | |- ( ph -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) -onto-> ( O Func P ) ) |
| 24 | df-f1o | |- ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-onto-> ( O Func P ) <-> ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) /\ ( oppFunc |` ( C Func D ) ) : ( C Func D ) -onto-> ( O Func P ) ) ) |
|
| 25 | 6 23 24 | sylanbrc | |- ( ph -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-onto-> ( O Func P ) ) |