This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite category of functors is compatible with the category of opposite functors in terms of composition. (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucoppc.o | |- O = ( oppCat ` C ) |
|
| fucoppc.p | |- P = ( oppCat ` D ) |
||
| fucoppc.q | |- Q = ( C FuncCat D ) |
||
| fucoppc.r | |- R = ( oppCat ` Q ) |
||
| fucoppc.s | |- S = ( O FuncCat P ) |
||
| fucoppc.n | |- N = ( C Nat D ) |
||
| fucoppc.f | |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) |
||
| fucoppc.g | |- ( ph -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
||
| fucoppcco.a | |- ( ph -> A e. ( X ( Hom ` R ) Y ) ) |
||
| fucoppcco.b | |- ( ph -> B e. ( Y ( Hom ` R ) Z ) ) |
||
| Assertion | fucoppcco | |- ( ph -> ( ( X G Z ) ` ( B ( <. X , Y >. ( comp ` R ) Z ) A ) ) = ( ( ( Y G Z ) ` B ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` S ) ( F ` Z ) ) ( ( X G Y ) ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppc.o | |- O = ( oppCat ` C ) |
|
| 2 | fucoppc.p | |- P = ( oppCat ` D ) |
|
| 3 | fucoppc.q | |- Q = ( C FuncCat D ) |
|
| 4 | fucoppc.r | |- R = ( oppCat ` Q ) |
|
| 5 | fucoppc.s | |- S = ( O FuncCat P ) |
|
| 6 | fucoppc.n | |- N = ( C Nat D ) |
|
| 7 | fucoppc.f | |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) |
|
| 8 | fucoppc.g | |- ( ph -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
|
| 9 | fucoppcco.a | |- ( ph -> A e. ( X ( Hom ` R ) Y ) ) |
|
| 10 | fucoppcco.b | |- ( ph -> B e. ( Y ( Hom ` R ) Z ) ) |
|
| 11 | eqid | |- ( O Nat P ) = ( O Nat P ) |
|
| 12 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 13 | 1 12 | oppcbas | |- ( Base ` C ) = ( Base ` O ) |
| 14 | eqid | |- ( comp ` P ) = ( comp ` P ) |
|
| 15 | eqid | |- ( comp ` S ) = ( comp ` S ) |
|
| 16 | 3 6 | fuchom | |- N = ( Hom ` Q ) |
| 17 | 16 4 | oppchom | |- ( X ( Hom ` R ) Y ) = ( Y N X ) |
| 18 | 9 17 | eleqtrdi | |- ( ph -> A e. ( Y N X ) ) |
| 19 | 6 | natrcl | |- ( A e. ( Y N X ) -> ( Y e. ( C Func D ) /\ X e. ( C Func D ) ) ) |
| 20 | 18 19 | syl | |- ( ph -> ( Y e. ( C Func D ) /\ X e. ( C Func D ) ) ) |
| 21 | 20 | simprd | |- ( ph -> X e. ( C Func D ) ) |
| 22 | 20 | simpld | |- ( ph -> Y e. ( C Func D ) ) |
| 23 | 1 2 6 7 21 22 | fucoppclem | |- ( ph -> ( Y N X ) = ( ( F ` X ) ( O Nat P ) ( F ` Y ) ) ) |
| 24 | 18 23 | eleqtrd | |- ( ph -> A e. ( ( F ` X ) ( O Nat P ) ( F ` Y ) ) ) |
| 25 | 16 4 | oppchom | |- ( Y ( Hom ` R ) Z ) = ( Z N Y ) |
| 26 | 10 25 | eleqtrdi | |- ( ph -> B e. ( Z N Y ) ) |
| 27 | 6 | natrcl | |- ( B e. ( Z N Y ) -> ( Z e. ( C Func D ) /\ Y e. ( C Func D ) ) ) |
| 28 | 26 27 | syl | |- ( ph -> ( Z e. ( C Func D ) /\ Y e. ( C Func D ) ) ) |
| 29 | 28 | simpld | |- ( ph -> Z e. ( C Func D ) ) |
| 30 | 1 2 6 7 22 29 | fucoppclem | |- ( ph -> ( Z N Y ) = ( ( F ` Y ) ( O Nat P ) ( F ` Z ) ) ) |
| 31 | 26 30 | eleqtrd | |- ( ph -> B e. ( ( F ` Y ) ( O Nat P ) ( F ` Z ) ) ) |
| 32 | 5 11 13 14 15 24 31 | fucco | |- ( ph -> ( B ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` S ) ( F ` Z ) ) A ) = ( z e. ( Base ` C ) |-> ( ( B ` z ) ( <. ( ( 1st ` ( F ` X ) ) ` z ) , ( ( 1st ` ( F ` Y ) ) ` z ) >. ( comp ` P ) ( ( 1st ` ( F ` Z ) ) ` z ) ) ( A ` z ) ) ) ) |
| 33 | eqidd | |- ( ph -> B = B ) |
|
| 34 | 8 22 29 33 26 | opf2 | |- ( ph -> ( ( Y G Z ) ` B ) = B ) |
| 35 | eqidd | |- ( ph -> A = A ) |
|
| 36 | 8 21 22 35 18 | opf2 | |- ( ph -> ( ( X G Y ) ` A ) = A ) |
| 37 | 34 36 | oveq12d | |- ( ph -> ( ( ( Y G Z ) ` B ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` S ) ( F ` Z ) ) ( ( X G Y ) ` A ) ) = ( B ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` S ) ( F ` Z ) ) A ) ) |
| 38 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 39 | eqid | |- ( comp ` Q ) = ( comp ` Q ) |
|
| 40 | 3 6 12 38 39 26 18 | fucco | |- ( ph -> ( A ( <. Z , Y >. ( comp ` Q ) X ) B ) = ( z e. ( Base ` C ) |-> ( ( A ` z ) ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` Y ) ` z ) >. ( comp ` D ) ( ( 1st ` X ) ` z ) ) ( B ` z ) ) ) ) |
| 41 | 3 | fucbas | |- ( C Func D ) = ( Base ` Q ) |
| 42 | 41 39 4 21 22 29 | oppcco | |- ( ph -> ( B ( <. X , Y >. ( comp ` R ) Z ) A ) = ( A ( <. Z , Y >. ( comp ` Q ) X ) B ) ) |
| 43 | 3 6 39 26 18 | fuccocl | |- ( ph -> ( A ( <. Z , Y >. ( comp ` Q ) X ) B ) e. ( Z N X ) ) |
| 44 | 8 21 29 42 43 | opf2 | |- ( ph -> ( ( X G Z ) ` ( B ( <. X , Y >. ( comp ` R ) Z ) A ) ) = ( A ( <. Z , Y >. ( comp ` Q ) X ) B ) ) |
| 45 | 7 21 | opf11 | |- ( ph -> ( 1st ` ( F ` X ) ) = ( 1st ` X ) ) |
| 46 | 45 | fveq1d | |- ( ph -> ( ( 1st ` ( F ` X ) ) ` z ) = ( ( 1st ` X ) ` z ) ) |
| 47 | 7 22 | opf11 | |- ( ph -> ( 1st ` ( F ` Y ) ) = ( 1st ` Y ) ) |
| 48 | 47 | fveq1d | |- ( ph -> ( ( 1st ` ( F ` Y ) ) ` z ) = ( ( 1st ` Y ) ` z ) ) |
| 49 | 46 48 | opeq12d | |- ( ph -> <. ( ( 1st ` ( F ` X ) ) ` z ) , ( ( 1st ` ( F ` Y ) ) ` z ) >. = <. ( ( 1st ` X ) ` z ) , ( ( 1st ` Y ) ` z ) >. ) |
| 50 | 7 29 | opf11 | |- ( ph -> ( 1st ` ( F ` Z ) ) = ( 1st ` Z ) ) |
| 51 | 50 | fveq1d | |- ( ph -> ( ( 1st ` ( F ` Z ) ) ` z ) = ( ( 1st ` Z ) ` z ) ) |
| 52 | 49 51 | oveq12d | |- ( ph -> ( <. ( ( 1st ` ( F ` X ) ) ` z ) , ( ( 1st ` ( F ` Y ) ) ` z ) >. ( comp ` P ) ( ( 1st ` ( F ` Z ) ) ` z ) ) = ( <. ( ( 1st ` X ) ` z ) , ( ( 1st ` Y ) ` z ) >. ( comp ` P ) ( ( 1st ` Z ) ` z ) ) ) |
| 53 | 52 | oveqd | |- ( ph -> ( ( B ` z ) ( <. ( ( 1st ` ( F ` X ) ) ` z ) , ( ( 1st ` ( F ` Y ) ) ` z ) >. ( comp ` P ) ( ( 1st ` ( F ` Z ) ) ` z ) ) ( A ` z ) ) = ( ( B ` z ) ( <. ( ( 1st ` X ) ` z ) , ( ( 1st ` Y ) ` z ) >. ( comp ` P ) ( ( 1st ` Z ) ` z ) ) ( A ` z ) ) ) |
| 54 | 53 | adantr | |- ( ( ph /\ z e. ( Base ` C ) ) -> ( ( B ` z ) ( <. ( ( 1st ` ( F ` X ) ) ` z ) , ( ( 1st ` ( F ` Y ) ) ` z ) >. ( comp ` P ) ( ( 1st ` ( F ` Z ) ) ` z ) ) ( A ` z ) ) = ( ( B ` z ) ( <. ( ( 1st ` X ) ` z ) , ( ( 1st ` Y ) ` z ) >. ( comp ` P ) ( ( 1st ` Z ) ` z ) ) ( A ` z ) ) ) |
| 55 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 56 | 21 | func1st2nd | |- ( ph -> ( 1st ` X ) ( C Func D ) ( 2nd ` X ) ) |
| 57 | 12 55 56 | funcf1 | |- ( ph -> ( 1st ` X ) : ( Base ` C ) --> ( Base ` D ) ) |
| 58 | 57 | ffvelcdmda | |- ( ( ph /\ z e. ( Base ` C ) ) -> ( ( 1st ` X ) ` z ) e. ( Base ` D ) ) |
| 59 | 22 | func1st2nd | |- ( ph -> ( 1st ` Y ) ( C Func D ) ( 2nd ` Y ) ) |
| 60 | 12 55 59 | funcf1 | |- ( ph -> ( 1st ` Y ) : ( Base ` C ) --> ( Base ` D ) ) |
| 61 | 60 | ffvelcdmda | |- ( ( ph /\ z e. ( Base ` C ) ) -> ( ( 1st ` Y ) ` z ) e. ( Base ` D ) ) |
| 62 | 29 | func1st2nd | |- ( ph -> ( 1st ` Z ) ( C Func D ) ( 2nd ` Z ) ) |
| 63 | 12 55 62 | funcf1 | |- ( ph -> ( 1st ` Z ) : ( Base ` C ) --> ( Base ` D ) ) |
| 64 | 63 | ffvelcdmda | |- ( ( ph /\ z e. ( Base ` C ) ) -> ( ( 1st ` Z ) ` z ) e. ( Base ` D ) ) |
| 65 | 55 38 2 58 61 64 | oppcco | |- ( ( ph /\ z e. ( Base ` C ) ) -> ( ( B ` z ) ( <. ( ( 1st ` X ) ` z ) , ( ( 1st ` Y ) ` z ) >. ( comp ` P ) ( ( 1st ` Z ) ` z ) ) ( A ` z ) ) = ( ( A ` z ) ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` Y ) ` z ) >. ( comp ` D ) ( ( 1st ` X ) ` z ) ) ( B ` z ) ) ) |
| 66 | 54 65 | eqtrd | |- ( ( ph /\ z e. ( Base ` C ) ) -> ( ( B ` z ) ( <. ( ( 1st ` ( F ` X ) ) ` z ) , ( ( 1st ` ( F ` Y ) ) ` z ) >. ( comp ` P ) ( ( 1st ` ( F ` Z ) ) ` z ) ) ( A ` z ) ) = ( ( A ` z ) ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` Y ) ` z ) >. ( comp ` D ) ( ( 1st ` X ) ` z ) ) ( B ` z ) ) ) |
| 67 | 66 | mpteq2dva | |- ( ph -> ( z e. ( Base ` C ) |-> ( ( B ` z ) ( <. ( ( 1st ` ( F ` X ) ) ` z ) , ( ( 1st ` ( F ` Y ) ) ` z ) >. ( comp ` P ) ( ( 1st ` ( F ` Z ) ) ` z ) ) ( A ` z ) ) ) = ( z e. ( Base ` C ) |-> ( ( A ` z ) ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` Y ) ` z ) >. ( comp ` D ) ( ( 1st ` X ) ` z ) ) ( B ` z ) ) ) ) |
| 68 | 40 44 67 | 3eqtr4d | |- ( ph -> ( ( X G Z ) ` ( B ( <. X , Y >. ( comp ` R ) Z ) A ) ) = ( z e. ( Base ` C ) |-> ( ( B ` z ) ( <. ( ( 1st ` ( F ` X ) ) ` z ) , ( ( 1st ` ( F ` Y ) ) ` z ) >. ( comp ` P ) ( ( 1st ` ( F ` Z ) ) ` z ) ) ( A ` z ) ) ) ) |
| 69 | 32 37 68 | 3eqtr4rd | |- ( ph -> ( ( X G Z ) ` ( B ( <. X , Y >. ( comp ` R ) Z ) A ) ) = ( ( ( Y G Z ) ` B ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` S ) ( F ` Z ) ) ( ( X G Y ) ` A ) ) ) |