This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite category of functors is compatible with the category of opposite functors in terms of identity morphism. (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucoppc.o | |- O = ( oppCat ` C ) |
|
| fucoppc.p | |- P = ( oppCat ` D ) |
||
| fucoppc.q | |- Q = ( C FuncCat D ) |
||
| fucoppc.r | |- R = ( oppCat ` Q ) |
||
| fucoppc.s | |- S = ( O FuncCat P ) |
||
| fucoppc.n | |- N = ( C Nat D ) |
||
| fucoppc.f | |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) |
||
| fucoppc.g | |- ( ph -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
||
| fucoppcid.x | |- ( ph -> X e. ( C Func D ) ) |
||
| Assertion | fucoppcid | |- ( ph -> ( ( X G X ) ` ( ( Id ` R ) ` X ) ) = ( ( Id ` S ) ` ( F ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppc.o | |- O = ( oppCat ` C ) |
|
| 2 | fucoppc.p | |- P = ( oppCat ` D ) |
|
| 3 | fucoppc.q | |- Q = ( C FuncCat D ) |
|
| 4 | fucoppc.r | |- R = ( oppCat ` Q ) |
|
| 5 | fucoppc.s | |- S = ( O FuncCat P ) |
|
| 6 | fucoppc.n | |- N = ( C Nat D ) |
|
| 7 | fucoppc.f | |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) |
|
| 8 | fucoppc.g | |- ( ph -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
|
| 9 | fucoppcid.x | |- ( ph -> X e. ( C Func D ) ) |
|
| 10 | 9 | func1st2nd | |- ( ph -> ( 1st ` X ) ( C Func D ) ( 2nd ` X ) ) |
| 11 | 10 | funcrcl3 | |- ( ph -> D e. Cat ) |
| 12 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 13 | 2 12 | oppcid | |- ( D e. Cat -> ( Id ` P ) = ( Id ` D ) ) |
| 14 | 11 13 | syl | |- ( ph -> ( Id ` P ) = ( Id ` D ) ) |
| 15 | 7 9 | opf11 | |- ( ph -> ( 1st ` ( F ` X ) ) = ( 1st ` X ) ) |
| 16 | 14 15 | coeq12d | |- ( ph -> ( ( Id ` P ) o. ( 1st ` ( F ` X ) ) ) = ( ( Id ` D ) o. ( 1st ` X ) ) ) |
| 17 | eqid | |- ( Id ` S ) = ( Id ` S ) |
|
| 18 | eqid | |- ( Id ` P ) = ( Id ` P ) |
|
| 19 | 1 2 | oppff1 | |- ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) |
| 20 | f1f | |- ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) ) |
|
| 21 | 19 20 | ax-mp | |- ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) |
| 22 | 7 | feq1d | |- ( ph -> ( F : ( C Func D ) --> ( O Func P ) <-> ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) ) ) |
| 23 | 21 22 | mpbiri | |- ( ph -> F : ( C Func D ) --> ( O Func P ) ) |
| 24 | 23 9 | ffvelcdmd | |- ( ph -> ( F ` X ) e. ( O Func P ) ) |
| 25 | 5 17 18 24 | fucid | |- ( ph -> ( ( Id ` S ) ` ( F ` X ) ) = ( ( Id ` P ) o. ( 1st ` ( F ` X ) ) ) ) |
| 26 | 10 | funcrcl2 | |- ( ph -> C e. Cat ) |
| 27 | 3 26 11 | fuccat | |- ( ph -> Q e. Cat ) |
| 28 | eqid | |- ( Id ` Q ) = ( Id ` Q ) |
|
| 29 | 4 28 | oppcid | |- ( Q e. Cat -> ( Id ` R ) = ( Id ` Q ) ) |
| 30 | 27 29 | syl | |- ( ph -> ( Id ` R ) = ( Id ` Q ) ) |
| 31 | 30 | fveq1d | |- ( ph -> ( ( Id ` R ) ` X ) = ( ( Id ` Q ) ` X ) ) |
| 32 | 3 28 12 9 | fucid | |- ( ph -> ( ( Id ` Q ) ` X ) = ( ( Id ` D ) o. ( 1st ` X ) ) ) |
| 33 | 31 32 | eqtrd | |- ( ph -> ( ( Id ` R ) ` X ) = ( ( Id ` D ) o. ( 1st ` X ) ) ) |
| 34 | 3 6 12 9 | fucidcl | |- ( ph -> ( ( Id ` D ) o. ( 1st ` X ) ) e. ( X N X ) ) |
| 35 | 8 9 9 33 34 | opf2 | |- ( ph -> ( ( X G X ) ` ( ( Id ` R ) ` X ) ) = ( ( Id ` D ) o. ( 1st ` X ) ) ) |
| 36 | 16 25 35 | 3eqtr4rd | |- ( ph -> ( ( X G X ) ` ( ( Id ` R ) ` X ) ) = ( ( Id ` S ) ` ( F ` X ) ) ) |