This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A fully faithful functor from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 19-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucoppc.o | |- O = ( oppCat ` C ) |
|
| fucoppc.p | |- P = ( oppCat ` D ) |
||
| fucoppc.q | |- Q = ( C FuncCat D ) |
||
| fucoppc.r | |- R = ( oppCat ` Q ) |
||
| fucoppc.s | |- S = ( O FuncCat P ) |
||
| fucoppc.n | |- N = ( C Nat D ) |
||
| fucoppc.f | |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) |
||
| fucoppc.g | |- ( ph -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
||
| fucoppcffth.c | |- ( ph -> C e. Cat ) |
||
| fucoppcffth.d | |- ( ph -> D e. Cat ) |
||
| Assertion | fucoppcffth | |- ( ph -> F ( ( R Full S ) i^i ( R Faith S ) ) G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppc.o | |- O = ( oppCat ` C ) |
|
| 2 | fucoppc.p | |- P = ( oppCat ` D ) |
|
| 3 | fucoppc.q | |- Q = ( C FuncCat D ) |
|
| 4 | fucoppc.r | |- R = ( oppCat ` Q ) |
|
| 5 | fucoppc.s | |- S = ( O FuncCat P ) |
|
| 6 | fucoppc.n | |- N = ( C Nat D ) |
|
| 7 | fucoppc.f | |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) |
|
| 8 | fucoppc.g | |- ( ph -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
|
| 9 | fucoppcffth.c | |- ( ph -> C e. Cat ) |
|
| 10 | fucoppcffth.d | |- ( ph -> D e. Cat ) |
|
| 11 | eqid | |- ( CatCat ` { R , S } ) = ( CatCat ` { R , S } ) |
|
| 12 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 13 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 14 | eqid | |- ( Iso ` ( CatCat ` { R , S } ) ) = ( Iso ` ( CatCat ` { R , S } ) ) |
|
| 15 | eqid | |- ( Base ` ( CatCat ` { R , S } ) ) = ( Base ` ( CatCat ` { R , S } ) ) |
|
| 16 | 3 9 10 | fuccat | |- ( ph -> Q e. Cat ) |
| 17 | 4 | oppccat | |- ( Q e. Cat -> R e. Cat ) |
| 18 | 16 17 | syl | |- ( ph -> R e. Cat ) |
| 19 | prid1g | |- ( R e. Cat -> R e. { R , S } ) |
|
| 20 | 18 19 | syl | |- ( ph -> R e. { R , S } ) |
| 21 | 20 18 | elind | |- ( ph -> R e. ( { R , S } i^i Cat ) ) |
| 22 | prex | |- { R , S } e. _V |
|
| 23 | 22 | a1i | |- ( ph -> { R , S } e. _V ) |
| 24 | 11 15 23 | catcbas | |- ( ph -> ( Base ` ( CatCat ` { R , S } ) ) = ( { R , S } i^i Cat ) ) |
| 25 | 21 24 | eleqtrrd | |- ( ph -> R e. ( Base ` ( CatCat ` { R , S } ) ) ) |
| 26 | 1 | oppccat | |- ( C e. Cat -> O e. Cat ) |
| 27 | 9 26 | syl | |- ( ph -> O e. Cat ) |
| 28 | 2 | oppccat | |- ( D e. Cat -> P e. Cat ) |
| 29 | 10 28 | syl | |- ( ph -> P e. Cat ) |
| 30 | 5 27 29 | fuccat | |- ( ph -> S e. Cat ) |
| 31 | prid2g | |- ( S e. Cat -> S e. { R , S } ) |
|
| 32 | 30 31 | syl | |- ( ph -> S e. { R , S } ) |
| 33 | 32 30 | elind | |- ( ph -> S e. ( { R , S } i^i Cat ) ) |
| 34 | 33 24 | eleqtrrd | |- ( ph -> S e. ( Base ` ( CatCat ` { R , S } ) ) ) |
| 35 | 1 2 3 4 5 6 7 8 11 15 14 9 10 25 34 | fucoppc | |- ( ph -> F ( R ( Iso ` ( CatCat ` { R , S } ) ) S ) G ) |
| 36 | df-br | |- ( F ( R ( Iso ` ( CatCat ` { R , S } ) ) S ) G <-> <. F , G >. e. ( R ( Iso ` ( CatCat ` { R , S } ) ) S ) ) |
|
| 37 | 35 36 | sylib | |- ( ph -> <. F , G >. e. ( R ( Iso ` ( CatCat ` { R , S } ) ) S ) ) |
| 38 | 11 12 13 14 37 | catcisoi | |- ( ph -> ( <. F , G >. e. ( ( R Full S ) i^i ( R Faith S ) ) /\ ( 1st ` <. F , G >. ) : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) |
| 39 | 38 | simpld | |- ( ph -> <. F , G >. e. ( ( R Full S ) i^i ( R Faith S ) ) ) |
| 40 | df-br | |- ( F ( ( R Full S ) i^i ( R Faith S ) ) G <-> <. F , G >. e. ( ( R Full S ) i^i ( R Faith S ) ) ) |
|
| 41 | 39 40 | sylibr | |- ( ph -> F ( ( R Full S ) i^i ( R Faith S ) ) G ) |